Remove stupid cache
This commit is contained in:
parent
d720f70668
commit
12846d890a
Binary file not shown.
Binary file not shown.
126
src/detector.py
Executable file → Normal file
126
src/detector.py
Executable file → Normal file
@ -85,129 +85,3 @@ class Detector:
|
||||
out_file = output_filename if output_filename else self.output_filename(filename)
|
||||
cv.imwrite(out_file, marked)
|
||||
return AnalyzedImage(filename, detections, str(out_file))
|
||||
|
||||
|
||||
|
||||
|
||||
# net = cv.dnn.readNet("/home/niten/Projects/yolo/yolov3.weights", "/home/niten/Projects/yolo/yolov3.cfg")
|
||||
|
||||
# classes = []
|
||||
|
||||
# with open("/home/niten/Projects/yolo/coco.names") as f:
|
||||
# classes = [line.strip() for line in f.readlines()]
|
||||
|
||||
# layer_names = net.getLayerNames()
|
||||
# output_layer = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
|
||||
# colors = np.random.uniform(0, 255, size=(len(classes), 3))
|
||||
|
||||
# def scale_int(o, s, m):
|
||||
# return (m / s) * o
|
||||
|
||||
# def scale_box(orig, scaled, box):
|
||||
# o_h, o_w, _ = orig.shape
|
||||
# s_h, s_w, _ = scaled.shape
|
||||
# x, y, w, h = box
|
||||
# return [scale_int(o_w, s_w, x),
|
||||
# scale_int(o_h, s_h, y),
|
||||
# scale_int(o_w, o_h, w),
|
||||
# scale_int(o_h, s_h, h)]
|
||||
|
||||
# tmpdir = Path(tempfile.mkdtemp())
|
||||
|
||||
# def detect_objects(filename):
|
||||
# simplename = path.splitext(path.basename(filename))[0]
|
||||
# out_filename = tmpdir / ("processed_" + simplename + ".png")
|
||||
|
||||
# orig = cv.imread(str(filename))
|
||||
# img = cv.imread(str(filename))
|
||||
# # img = cv.resize(img, None, fx=0.4, fy=0.4)
|
||||
# height, width, channel = img.shape
|
||||
# # TODO: Change scale factor?
|
||||
# blob = cv.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
|
||||
# net.setInput(blob)
|
||||
# outs = net.forward(output_layer)
|
||||
|
||||
# class_ids = []
|
||||
# confidences = []
|
||||
# boxes = []
|
||||
|
||||
# detections = []
|
||||
|
||||
# for out in outs:
|
||||
# for detection in out:
|
||||
# scores = detection[5:]
|
||||
# class_id = np.argmax(scores)
|
||||
# confidence = scores[class_id]
|
||||
# if confidence > 0.6:
|
||||
# center_x = int(detection[0] * width)
|
||||
# center_y = int(detection[1] * height)
|
||||
# w = int(detection[2] * width)
|
||||
# h = int(detection[3] * height)
|
||||
# x = int(center_x - w/2)
|
||||
# y = int(center_y - h/2)
|
||||
# boxes.append([x, y, w, h])
|
||||
# confidences.append(float(confidence))
|
||||
# class_ids.append(class_id)
|
||||
|
||||
# indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
# font = cv.FONT_HERSHEY_PLAIN
|
||||
# for i in range(len(boxes)):
|
||||
# if i in indexes:
|
||||
# label = str(classes[class_ids[i]])
|
||||
# color = colors[i]
|
||||
# scaled_box = scale_box(orig, img, boxes[i])
|
||||
# x, y, w, h = [int(n) for n in scaled_box]
|
||||
# detections.append(Detection(label, confidences[i], scaled_box))
|
||||
# # cv.rectangle(out, (x, y), (x + w, y + h), color, 2)
|
||||
# # cv.putText(out, label, (x, y + 30), font, 3, color, 3)
|
||||
|
||||
# #cv.imwrite(str(out_filename), out)
|
||||
# marked = cv.imread(filename)
|
||||
# for detection in detections:
|
||||
# x, y, w, h = [int(n) for n in detection.box]
|
||||
# cv.rectangle(marked, (x,y), (x + w, y + h), (255,255,255,0), 2)
|
||||
# cv.putText(marked, detection.label, (x, y + 30), font, 3, (255,255,255,0), 1)
|
||||
|
||||
# cv.imwrite(str(out_filename), marked)
|
||||
# return AnalyzedImage(filename, detections, str(out_filename))
|
||||
|
||||
# # cv.imshow("IMG", img)
|
||||
# # cv.waitKey(0)
|
||||
# # cv.destroyAllWindows()
|
||||
|
||||
# for filename in sys.argv[1:]:
|
||||
# print(filename + ":")
|
||||
# output = detect_objects(filename)
|
||||
# print(" OUTPUT: " + str(output.outfile))
|
||||
# for detection in output.detections:
|
||||
# print(" " + detection.label +
|
||||
# " (" + str(detection.confidence) + ")" +
|
||||
# " [" +
|
||||
# str(detection.box[0]) + ", " +
|
||||
# str(detection.box[1]) + ", " +
|
||||
# str(detection.box[2]) + ", " +
|
||||
# str(detection.box[3]) +
|
||||
# "]")
|
||||
|
||||
|
||||
# classes = []
|
||||
|
||||
# with open("/home/niten/Projects/yolo/coco.names") as f:
|
||||
# classes = [line.strip() for line in f.readlines()]
|
||||
|
||||
# detector = Detector("/home/niten/Projects/yolo/yolov3.weights", "/home/niten/Projects/yolo/yolov3.cfg", classes, Path(tempfile.mkdtemp()))
|
||||
|
||||
# for filename in sys.argv[1:]:
|
||||
# print(filename + ":")
|
||||
# output = detector.detect_objects(filename)
|
||||
# print(" OUTPUT: " + str(output.outfile))
|
||||
# for detection in output.detections:
|
||||
# print(" " + detection.label +
|
||||
# " (" + str(detection.confidence) + ")" +
|
||||
# " [" +
|
||||
# str(detection.box[0]) + ", " +
|
||||
# str(detection.box[1]) + ", " +
|
||||
# str(detection.box[2]) + ", " +
|
||||
# str(detection.box[3]) +
|
||||
# "]")
|
||||
|
Loading…
Reference in New Issue
Block a user