Remove stupid cache

This commit is contained in:
niten 2023-01-07 15:54:52 -08:00
parent d720f70668
commit 12846d890a
3 changed files with 0 additions and 126 deletions

126
src/detector.py Executable file → Normal file
View File

@ -85,129 +85,3 @@ class Detector:
out_file = output_filename if output_filename else self.output_filename(filename)
cv.imwrite(out_file, marked)
return AnalyzedImage(filename, detections, str(out_file))
# net = cv.dnn.readNet("/home/niten/Projects/yolo/yolov3.weights", "/home/niten/Projects/yolo/yolov3.cfg")
# classes = []
# with open("/home/niten/Projects/yolo/coco.names") as f:
# classes = [line.strip() for line in f.readlines()]
# layer_names = net.getLayerNames()
# output_layer = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
# colors = np.random.uniform(0, 255, size=(len(classes), 3))
# def scale_int(o, s, m):
# return (m / s) * o
# def scale_box(orig, scaled, box):
# o_h, o_w, _ = orig.shape
# s_h, s_w, _ = scaled.shape
# x, y, w, h = box
# return [scale_int(o_w, s_w, x),
# scale_int(o_h, s_h, y),
# scale_int(o_w, o_h, w),
# scale_int(o_h, s_h, h)]
# tmpdir = Path(tempfile.mkdtemp())
# def detect_objects(filename):
# simplename = path.splitext(path.basename(filename))[0]
# out_filename = tmpdir / ("processed_" + simplename + ".png")
# orig = cv.imread(str(filename))
# img = cv.imread(str(filename))
# # img = cv.resize(img, None, fx=0.4, fy=0.4)
# height, width, channel = img.shape
# # TODO: Change scale factor?
# blob = cv.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
# net.setInput(blob)
# outs = net.forward(output_layer)
# class_ids = []
# confidences = []
# boxes = []
# detections = []
# for out in outs:
# for detection in out:
# scores = detection[5:]
# class_id = np.argmax(scores)
# confidence = scores[class_id]
# if confidence > 0.6:
# center_x = int(detection[0] * width)
# center_y = int(detection[1] * height)
# w = int(detection[2] * width)
# h = int(detection[3] * height)
# x = int(center_x - w/2)
# y = int(center_y - h/2)
# boxes.append([x, y, w, h])
# confidences.append(float(confidence))
# class_ids.append(class_id)
# indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# font = cv.FONT_HERSHEY_PLAIN
# for i in range(len(boxes)):
# if i in indexes:
# label = str(classes[class_ids[i]])
# color = colors[i]
# scaled_box = scale_box(orig, img, boxes[i])
# x, y, w, h = [int(n) for n in scaled_box]
# detections.append(Detection(label, confidences[i], scaled_box))
# # cv.rectangle(out, (x, y), (x + w, y + h), color, 2)
# # cv.putText(out, label, (x, y + 30), font, 3, color, 3)
# #cv.imwrite(str(out_filename), out)
# marked = cv.imread(filename)
# for detection in detections:
# x, y, w, h = [int(n) for n in detection.box]
# cv.rectangle(marked, (x,y), (x + w, y + h), (255,255,255,0), 2)
# cv.putText(marked, detection.label, (x, y + 30), font, 3, (255,255,255,0), 1)
# cv.imwrite(str(out_filename), marked)
# return AnalyzedImage(filename, detections, str(out_filename))
# # cv.imshow("IMG", img)
# # cv.waitKey(0)
# # cv.destroyAllWindows()
# for filename in sys.argv[1:]:
# print(filename + ":")
# output = detect_objects(filename)
# print(" OUTPUT: " + str(output.outfile))
# for detection in output.detections:
# print(" " + detection.label +
# " (" + str(detection.confidence) + ")" +
# " [" +
# str(detection.box[0]) + ", " +
# str(detection.box[1]) + ", " +
# str(detection.box[2]) + ", " +
# str(detection.box[3]) +
# "]")
# classes = []
# with open("/home/niten/Projects/yolo/coco.names") as f:
# classes = [line.strip() for line in f.readlines()]
# detector = Detector("/home/niten/Projects/yolo/yolov3.weights", "/home/niten/Projects/yolo/yolov3.cfg", classes, Path(tempfile.mkdtemp()))
# for filename in sys.argv[1:]:
# print(filename + ":")
# output = detector.detect_objects(filename)
# print(" OUTPUT: " + str(output.outfile))
# for detection in output.detections:
# print(" " + detection.label +
# " (" + str(detection.confidence) + ")" +
# " [" +
# str(detection.box[0]) + ", " +
# str(detection.box[1]) + ", " +
# str(detection.box[2]) + ", " +
# str(detection.box[3]) +
# "]")