301 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Nix
		
	
	
	
	
	
			
		
		
	
	
			301 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Nix
		
	
	
	
	
	
{ stdenv, lib, fetchFromGitHub, fetchpatch, buildPythonPackage, python,
 | 
						||
  cudaSupport ? false, cudatoolkit ? null, cudnn ? null, nccl ? null, magma ? null,
 | 
						||
  mklDnnSupport ? true, useSystemNccl ? true,
 | 
						||
  MPISupport ? false, mpi,
 | 
						||
  buildDocs ? false,
 | 
						||
  cudaArchList ? null,
 | 
						||
 | 
						||
  # Native build inputs
 | 
						||
  cmake, util-linux, linkFarm, symlinkJoin, which,
 | 
						||
 | 
						||
  # Build inputs
 | 
						||
  numactl,
 | 
						||
 | 
						||
  # Propagated build inputs
 | 
						||
  dataclasses, numpy, pyyaml, cffi, click, typing-extensions,
 | 
						||
 | 
						||
  # Unit tests
 | 
						||
  hypothesis, psutil,
 | 
						||
 | 
						||
  # virtual pkg that consistently instantiates blas across nixpkgs
 | 
						||
  # See https://github.com/NixOS/nixpkgs/pull/83888
 | 
						||
  blas,
 | 
						||
 | 
						||
  # ninja (https://ninja-build.org) must be available to run C++ extensions tests,
 | 
						||
  ninja,
 | 
						||
 | 
						||
  # dependencies for torch.utils.tensorboard
 | 
						||
  pillow, six, future, tensorflow-tensorboard, protobuf,
 | 
						||
 | 
						||
  isPy3k, pythonOlder }:
 | 
						||
 | 
						||
# assert that everything needed for cuda is present and that the correct cuda versions are used
 | 
						||
assert !cudaSupport || cudatoolkit != null;
 | 
						||
assert cudnn == null || cudatoolkit != null;
 | 
						||
assert !cudaSupport || (let majorIs = lib.versions.major cudatoolkit.version;
 | 
						||
                        in majorIs == "9" || majorIs == "10" || majorIs == "11");
 | 
						||
 | 
						||
# confirm that cudatoolkits are sync'd across dependencies
 | 
						||
assert !(MPISupport && cudaSupport) || mpi.cudatoolkit == cudatoolkit;
 | 
						||
assert !cudaSupport || magma.cudatoolkit == cudatoolkit;
 | 
						||
 | 
						||
let
 | 
						||
  cudatoolkit_joined = symlinkJoin {
 | 
						||
    name = "${cudatoolkit.name}-unsplit";
 | 
						||
    # nccl is here purely for semantic grouping it could be moved to nativeBuildInputs
 | 
						||
    paths = [ cudatoolkit.out cudatoolkit.lib nccl.dev nccl.out ];
 | 
						||
  };
 | 
						||
 | 
						||
  # Give an explicit list of supported architectures for the build, See:
 | 
						||
  # - pytorch bug report: https://github.com/pytorch/pytorch/issues/23573
 | 
						||
  # - pytorch-1.2.0 build on nixpks: https://github.com/NixOS/nixpkgs/pull/65041
 | 
						||
  #
 | 
						||
  # This list was selected by omitting the TORCH_CUDA_ARCH_LIST parameter,
 | 
						||
  # observing the fallback option (which selected all architectures known
 | 
						||
  # from cudatoolkit_10_0, pytorch-1.2, and python-3.6), and doing a binary
 | 
						||
  # searching to find offending architectures.
 | 
						||
  #
 | 
						||
  # NOTE: Because of sandboxing, this derivation can't auto-detect the hardware's
 | 
						||
  # cuda architecture, so there is also now a problem around new architectures
 | 
						||
  # not being supported until explicitly added to this derivation.
 | 
						||
  #
 | 
						||
  # FIXME: CMake is throwing the following warning on python-1.2:
 | 
						||
  #
 | 
						||
  # ```
 | 
						||
  # CMake Warning at cmake/public/utils.cmake:172 (message):
 | 
						||
  #   In the future we will require one to explicitly pass TORCH_CUDA_ARCH_LIST
 | 
						||
  #   to cmake instead of implicitly setting it as an env variable.  This will
 | 
						||
  #   become a FATAL_ERROR in future version of pytorch.
 | 
						||
  # ```
 | 
						||
  # If this is causing problems for your build, this derivation may have to strip
 | 
						||
  # away the standard `buildPythonPackage` and use the
 | 
						||
  # [*Adjust Build Options*](https://github.com/pytorch/pytorch/tree/v1.2.0#adjust-build-options-optional)
 | 
						||
  # instructions. This will also add more flexibility around configurations
 | 
						||
  # (allowing FBGEMM to be built in pytorch-1.1), and may future proof this
 | 
						||
  # derivation.
 | 
						||
  brokenArchs = [ "3.0" ]; # this variable is only used as documentation.
 | 
						||
  cuda9ArchList = [
 | 
						||
    "3.5"
 | 
						||
    "5.0"
 | 
						||
    "5.2"
 | 
						||
    "6.0"
 | 
						||
    "6.1"
 | 
						||
    "7.0"
 | 
						||
    "7.0+PTX"  # I am getting a "undefined architecture compute_75" on cuda 9
 | 
						||
               # which leads me to believe this is the final cuda-9-compatible architecture.
 | 
						||
  ];
 | 
						||
  cuda10ArchList = cuda9ArchList ++ [
 | 
						||
    "7.5"
 | 
						||
    "7.5+PTX"  # < most recent architecture as of cudatoolkit_10_0 and pytorch-1.2.0
 | 
						||
  ];
 | 
						||
  final_cudaArchList =
 | 
						||
    if !cudaSupport || cudaArchList != null
 | 
						||
    then cudaArchList
 | 
						||
    else
 | 
						||
      if lib.versions.major cudatoolkit.version == "9"
 | 
						||
      then cuda9ArchList
 | 
						||
      else cuda10ArchList; # the assert above removes any ambiguity here.
 | 
						||
 | 
						||
  # Normally libcuda.so.1 is provided at runtime by nvidia-x11 via
 | 
						||
  # LD_LIBRARY_PATH=/run/opengl-driver/lib.  We only use the stub
 | 
						||
  # libcuda.so from cudatoolkit for running tests, so that we don’t have
 | 
						||
  # to recompile pytorch on every update to nvidia-x11 or the kernel.
 | 
						||
  cudaStub = linkFarm "cuda-stub" [{
 | 
						||
    name = "libcuda.so.1";
 | 
						||
    path = "${cudatoolkit}/lib/stubs/libcuda.so";
 | 
						||
  }];
 | 
						||
  cudaStubEnv = lib.optionalString cudaSupport
 | 
						||
    "LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:}$LD_LIBRARY_PATH ";
 | 
						||
 | 
						||
in buildPythonPackage rec {
 | 
						||
  pname = "pytorch";
 | 
						||
  # Don't forget to update pytorch-bin to the same version.
 | 
						||
  version = "1.7.1";
 | 
						||
 | 
						||
  disabled = !isPy3k;
 | 
						||
 | 
						||
  outputs = [
 | 
						||
    "out"   # output standard python package
 | 
						||
    "dev"   # output libtorch headers
 | 
						||
    "lib"   # output libtorch libraries
 | 
						||
  ];
 | 
						||
 | 
						||
  src = fetchFromGitHub {
 | 
						||
    owner  = "pytorch";
 | 
						||
    repo   = "pytorch";
 | 
						||
    rev    = "v${version}";
 | 
						||
    fetchSubmodules = true;
 | 
						||
    sha256 = "sha256-udpbSL8xnzf20A1pYYNlYjdp8ME8AVaAkMMiw53K6CU=";
 | 
						||
  };
 | 
						||
 | 
						||
  patches = lib.optionals stdenv.isDarwin [
 | 
						||
    # pthreadpool added support for Grand Central Dispatch in April
 | 
						||
    # 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
 | 
						||
    # that is available starting with macOS 10.13. However, our current
 | 
						||
    # base is 10.12. Until we upgrade, we can fall back on the older
 | 
						||
    # pthread support.
 | 
						||
    ./pthreadpool-disable-gcd.diff
 | 
						||
  ];
 | 
						||
 | 
						||
  # The dataclasses module is included with Python >= 3.7. This should
 | 
						||
  # be fixed with the next PyTorch release.
 | 
						||
  postPatch = ''
 | 
						||
    substituteInPlace setup.py \
 | 
						||
      --replace "'dataclasses'" "'dataclasses; python_version < \"3.7\"'"
 | 
						||
  '';
 | 
						||
 | 
						||
  preConfigure = lib.optionalString cudaSupport ''
 | 
						||
    export TORCH_CUDA_ARCH_LIST="${lib.strings.concatStringsSep ";" final_cudaArchList}"
 | 
						||
    export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++
 | 
						||
  '' + lib.optionalString (cudaSupport && cudnn != null) ''
 | 
						||
    export CUDNN_INCLUDE_DIR=${cudnn}/include
 | 
						||
  '';
 | 
						||
 | 
						||
  # Use pytorch's custom configurations
 | 
						||
  dontUseCmakeConfigure = true;
 | 
						||
 | 
						||
  BUILD_NAMEDTENSOR = true;
 | 
						||
  BUILD_DOCS = buildDocs;
 | 
						||
 | 
						||
  USE_MKL = blas.implementation == "mkl";
 | 
						||
 | 
						||
  # Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
 | 
						||
  # it by default. PyTorch currently uses its own vendored version
 | 
						||
  # of oneDNN through Intel iDeep.
 | 
						||
  USE_MKLDNN = mklDnnSupport;
 | 
						||
  USE_MKLDNN_CBLAS = mklDnnSupport;
 | 
						||
 | 
						||
  preBuild = ''
 | 
						||
    export MAX_JOBS=$NIX_BUILD_CORES
 | 
						||
    ${python.interpreter} setup.py build --cmake-only
 | 
						||
    ${cmake}/bin/cmake build
 | 
						||
  '';
 | 
						||
 | 
						||
  preFixup = ''
 | 
						||
    function join_by { local IFS="$1"; shift; echo "$*"; }
 | 
						||
    function strip2 {
 | 
						||
      IFS=':'
 | 
						||
      read -ra RP <<< $(patchelf --print-rpath $1)
 | 
						||
      IFS=' '
 | 
						||
      RP_NEW=$(join_by : ''${RP[@]:2})
 | 
						||
      patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
 | 
						||
    }
 | 
						||
    for f in $(find ''${out} -name 'libcaffe2*.so')
 | 
						||
    do
 | 
						||
      strip2 $f
 | 
						||
    done
 | 
						||
  '';
 | 
						||
 | 
						||
  # Override the (weirdly) wrong version set by default. See
 | 
						||
  # https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
 | 
						||
  # https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
 | 
						||
  PYTORCH_BUILD_VERSION = version;
 | 
						||
  PYTORCH_BUILD_NUMBER = 0;
 | 
						||
 | 
						||
  USE_SYSTEM_NCCL=useSystemNccl;                  # don't build pytorch's third_party NCCL
 | 
						||
 | 
						||
  # Suppress a weird warning in mkl-dnn, part of ideep in pytorch
 | 
						||
  # (upstream seems to have fixed this in the wrong place?)
 | 
						||
  # https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
 | 
						||
  # https://github.com/pytorch/pytorch/issues/22346
 | 
						||
  #
 | 
						||
  # Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
 | 
						||
  # https://github.com/pytorch/pytorch/blob/v1.2.0/setup.py#L17
 | 
						||
  NIX_CFLAGS_COMPILE = lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ];
 | 
						||
 | 
						||
  nativeBuildInputs = [
 | 
						||
    cmake
 | 
						||
    util-linux
 | 
						||
    which
 | 
						||
    ninja
 | 
						||
  ] ++ lib.optionals cudaSupport [ cudatoolkit_joined ];
 | 
						||
 | 
						||
  buildInputs = [ blas blas.provider ]
 | 
						||
    ++ lib.optionals cudaSupport [ cudnn magma nccl ]
 | 
						||
    ++ lib.optionals stdenv.isLinux [ numactl ];
 | 
						||
 | 
						||
  propagatedBuildInputs = [
 | 
						||
    cffi
 | 
						||
    click
 | 
						||
    numpy
 | 
						||
    pyyaml
 | 
						||
    typing-extensions
 | 
						||
    # the following are required for tensorboard support
 | 
						||
    pillow six future tensorflow-tensorboard protobuf
 | 
						||
  ] ++ lib.optionals MPISupport [ mpi ]
 | 
						||
    ++ lib.optionals (pythonOlder "3.7") [ dataclasses ];
 | 
						||
 | 
						||
  checkInputs = [ hypothesis ninja psutil ];
 | 
						||
 | 
						||
  # Tests take a long time and may be flaky, so just sanity-check imports
 | 
						||
  doCheck = false;
 | 
						||
  pythonImportsCheck = [
 | 
						||
    "torch"
 | 
						||
  ];
 | 
						||
 | 
						||
  checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [
 | 
						||
    cudaStubEnv
 | 
						||
    "${python.interpreter} test/run_test.py"
 | 
						||
    "--exclude"
 | 
						||
    (concatStringsSep " " [
 | 
						||
      "utils" # utils requires git, which is not allowed in the check phase
 | 
						||
 | 
						||
      # "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
 | 
						||
      # ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
 | 
						||
 | 
						||
      # tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
 | 
						||
      (optionalString (majorMinor version == "1.3" ) "tensorboard")
 | 
						||
    ])
 | 
						||
  ];
 | 
						||
  postInstall = ''
 | 
						||
    mkdir $dev
 | 
						||
    cp -r $out/${python.sitePackages}/torch/include $dev/include
 | 
						||
    cp -r $out/${python.sitePackages}/torch/share   $dev/share
 | 
						||
 | 
						||
    # Fix up library paths for split outputs
 | 
						||
    substituteInPlace \
 | 
						||
      $dev/share/cmake/Torch/TorchConfig.cmake \
 | 
						||
      --replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"
 | 
						||
 | 
						||
    substituteInPlace \
 | 
						||
      $dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
 | 
						||
      --replace \''${_IMPORT_PREFIX}/lib "$lib/lib"
 | 
						||
 | 
						||
    mkdir $lib
 | 
						||
    cp -r $out/${python.sitePackages}/torch/lib     $lib/lib
 | 
						||
  '';
 | 
						||
 | 
						||
  postFixup = lib.optionalString stdenv.isDarwin ''
 | 
						||
    for f in $(ls $lib/lib/*.dylib); do
 | 
						||
        install_name_tool -id $lib/lib/$(basename $f) $f || true
 | 
						||
    done
 | 
						||
 | 
						||
    install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
 | 
						||
    install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
 | 
						||
    install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
 | 
						||
 | 
						||
    install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
 | 
						||
 | 
						||
    install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_observers.dylib
 | 
						||
    install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_observers.dylib
 | 
						||
 | 
						||
    install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib
 | 
						||
    install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib
 | 
						||
 | 
						||
    install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_detectron_ops.dylib
 | 
						||
    install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_detectron_ops.dylib
 | 
						||
 | 
						||
    install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
 | 
						||
    install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
 | 
						||
  '';
 | 
						||
 | 
						||
 | 
						||
  meta = {
 | 
						||
    description = "Open source, prototype-to-production deep learning platform";
 | 
						||
    homepage    = "https://pytorch.org/";
 | 
						||
    license     = lib.licenses.bsd3;
 | 
						||
    platforms   = with lib.platforms; linux ++ lib.optionals (!cudaSupport) darwin;
 | 
						||
    maintainers = with lib.maintainers; [ danieldk teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds
 | 
						||
  };
 | 
						||
}
 |