python3Packages.tensorflow-bin: 1.14.0 -> 2.1.0

This commit is contained in:
(cdep)illabout 2020-02-28 18:18:04 +09:00 committed by Frederik Rietdijk
parent d8d9358c04
commit 9e8dea7986
3 changed files with 157 additions and 80 deletions

View File

@ -14,6 +14,9 @@
, absl-py , absl-py
, grpcio , grpcio
, mock , mock
, scipy
, wheel
, opt-einsum
, backports_weakref , backports_weakref
, tensorflow-estimator , tensorflow-estimator
, tensorflow-tensorboard , tensorflow-tensorboard
@ -55,21 +58,22 @@ in buildPythonPackage {
src = let src = let
pyVerNoDot = lib.strings.stringAsChars (x: if x == "." then "" else x) python.pythonVersion; pyVerNoDot = lib.strings.stringAsChars (x: if x == "." then "" else x) python.pythonVersion;
pyver = if stdenv.isDarwin then builtins.substring 0 1 pyVerNoDot else pyVerNoDot;
platform = if stdenv.isDarwin then "mac" else "linux"; platform = if stdenv.isDarwin then "mac" else "linux";
unit = if cudaSupport then "gpu" else "cpu"; unit = if cudaSupport then "gpu" else "cpu";
key = "${platform}_py_${pyver}_${unit}"; key = "${platform}_py_${pyVerNoDot}_${unit}";
in fetchurl packages.${key}; in fetchurl packages.${key};
propagatedBuildInputs = [ propagatedBuildInputs = [
protobuf protobuf
numpy numpy
scipy
termcolor termcolor
grpcio grpcio
six six
astor astor
absl-py absl-py
gast gast
opt-einsum
google-pasta google-pasta
wrapt wrapt
tensorflow-estimator tensorflow-estimator
@ -79,40 +83,94 @@ in buildPythonPackage {
] ++ lib.optional (!isPy3k) mock ] ++ lib.optional (!isPy3k) mock
++ lib.optionals (pythonOlder "3.4") [ backports_weakref ]; ++ lib.optionals (pythonOlder "3.4") [ backports_weakref ];
nativeBuildInputs = lib.optional cudaSupport addOpenGLRunpath; nativeBuildInputs = [ wheel ] ++ lib.optional cudaSupport addOpenGLRunpath;
# Upstream has a pip hack that results in bin/tensorboard being in both tensorflow preConfigure = ''
# and the propageted input tensorflow-tensorboard which causes environment collisions. unset SOURCE_DATE_EPOCH
# another possibility would be to have tensorboard only in the buildInputs
# https://github.com/tensorflow/tensorflow/blob/v1.7.1/tensorflow/tools/pip_package/setup.py#L79 # Make sure that dist and the wheel file are writable.
postInstall = '' chmod u+rwx -R ./dist
rm $out/bin/tensorboard
pushd dist
# Unpack the wheel file.
wheel unpack --dest unpacked ./*.whl
# Tensorflow has a hard dependency on gast==0.2.2, but we relax it to
# gast==0.3.2.
substituteInPlace ./unpacked/tensorflow*/tensorflow_core/tools/pip_package/setup.py --replace "gast == 0.2.2" "gast == 0.3.2"
substituteInPlace ./unpacked/tensorflow*/tensorflow_*.dist-info/METADATA --replace "gast (==0.2.2)" "gast (==0.3.2)"
# Pack the wheel file back up.
wheel pack ./unpacked/tensorflow*
popd
''; '';
# Note that we need to run *after* the fixup phase because the # Note that we need to run *after* the fixup phase because the
# libraries are loaded at runtime. If we run in preFixup then # libraries are loaded at runtime. If we run in preFixup then
# patchelf --shrink-rpath will remove the cuda libraries. # patchelf --shrink-rpath will remove the cuda libraries.
postFixup = let postFixup =
rpath = stdenv.lib.makeLibraryPath let
([ stdenv.cc.cc.lib zlib ] ++ lib.optionals cudaSupport [ cudatoolkit.out cudatoolkit.lib cudnn nvidia_x11 ]); # rpaths we only need to add if CUDA is enabled.
in cudapaths = lib.optionals cudaSupport [
lib.optionalString stdenv.isLinux '' cudatoolkit.out
rrPath="$out/${python.sitePackages}/tensorflow/:$out/${python.sitePackages}/tensorflow/contrib/tensor_forest/:${rpath}" cudatoolkit.lib
internalLibPath="$out/${python.sitePackages}/tensorflow/python/_pywrap_tensorflow_internal.so" cudnn
find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do nvidia_x11
patchelf --set-rpath "$rrPath" "$lib" ];
${lib.optionalString cudaSupport ''
addOpenGLRunpath "$lib"
''}
done
'';
libpaths = [
stdenv.cc.cc.lib
zlib
];
rpath = stdenv.lib.makeLibraryPath (libpaths ++ cudapaths);
in
lib.optionalString stdenv.isLinux ''
# This is an array containing all the directories in the tensorflow2
# package that contain .so files.
#
# TODO: Create this list programmatically, and remove paths that aren't
# actually needed.
rrPathArr=(
"$out/${python.sitePackages}/tensorflow_core/"
"$out/${python.sitePackages}/tensorflow_core/compiler/tf2tensorrt/"
"$out/${python.sitePackages}/tensorflow_core/compiler/tf2xla/ops/"
"$out/${python.sitePackages}/tensorflow_core/lite/experimental/microfrontend/python/ops/"
"$out/${python.sitePackages}/tensorflow_core/lite/python/interpreter_wrapper/"
"$out/${python.sitePackages}/tensorflow_core/lite/python/optimize/"
"$out/${python.sitePackages}/tensorflow_core/python/"
"$out/${python.sitePackages}/tensorflow_core/python/framework/"
"${rpath}"
)
# The the bash array into a colon-separated list of RPATHs.
rrPath=$(IFS=$':'; echo "''${rrPathArr[*]}")
echo "about to run patchelf with the following rpath: $rrPath"
find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do
echo "about to patchelf $lib..."
chmod a+rx "$lib"
patchelf --set-rpath "$rrPath" "$lib"
${lib.optionalString cudaSupport ''
addOpenGLRunpath "$lib"
''}
done
'';
pythonImportsCheck = [
"tensorflow"
"tensorflow.keras"
"tensorflow.python"
"tensorflow.python.framework"
];
meta = with stdenv.lib; { meta = with stdenv.lib; {
description = "Computation using data flow graphs for scalable machine learning"; description = "Computation using data flow graphs for scalable machine learning";
homepage = http://tensorflow.org; homepage = http://tensorflow.org;
license = licenses.asl20; license = licenses.asl20;
maintainers = with maintainers; [ jyp abbradar ]; maintainers = with maintainers; [ jyp abbradar cdepillabout ];
platforms = [ "x86_64-linux" "x86_64-darwin" ]; platforms = [ "x86_64-linux" "x86_64-darwin" ];
# Python 2.7 build uses different string encoding. # Python 2.7 build uses different string encoding.
# See https://github.com/NixOS/nixpkgs/pull/37044#issuecomment-373452253 # See https://github.com/NixOS/nixpkgs/pull/37044#issuecomment-373452253

View File

@ -1,43 +1,51 @@
{ {
version = "1.14.0"; version = "2.1.0";
linux_py_27_cpu = {
url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.14.0-cp27-none-linux_x86_64.whl";
sha256 = "0yywdrfk97dh1bxhibspg0raz70fx9lcczj6xlimqy4xb60clx7k";
};
linux_py_35_cpu = {
url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.14.0-cp35-cp35m-linux_x86_64.whl";
sha256 = "1xvyb6xcrjhlwvrmrhn5vs9xy7g98smqmpv4i3hhpry4qyasphhj";
};
linux_py_36_cpu = {
url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.14.0-cp36-cp36m-linux_x86_64.whl";
sha256 = "1psd9vyxz9f39dwj77nvrg373sxv3p5vdp9fnz81dpsm0b0mwl44";
};
linux_py_37_cpu = {
url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.14.0-cp37-cp37m-linux_x86_64.whl";
sha256 = "0bg2sb1n2ag27r7ww695kg5hb0mjrw4kc5893krmixx2j71860c5";
};
linux_py_27_gpu = { linux_py_27_gpu = {
url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.14.0-cp27-none-linux_x86_64.whl"; url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.1.0-cp27-cp27mu-manylinux2010_x86_64.whl";
sha256 = "0y1x91gayg6pjddgl8ndcm63wfzhyv4s5khgl7ffzsgni1ivaqw5"; sha256 = "17lnhr7vdrls68c79n3sah5rpd0q1x2v5m84azvlyxxh2wpypfmb";
};
linux_py_27_cpu = {
url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.1.0-cp27-cp27mu-manylinux2010_x86_64.whl";
sha256 = "10lz3i4pcpgqrcbjmxm0n7k1gsqlpna3kdid902j2fy060cpi93z";
}; };
linux_py_35_gpu = { linux_py_35_gpu = {
url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.14.0-cp35-cp35m-linux_x86_64.whl"; url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.1.0-cp35-cp35m-manylinux2010_x86_64.whl";
sha256 = "03piggpbz1jx8m2b95spq3jrdff4w6xx63ji07am7hyw2nsgx3mx"; sha256 = "09s081n08dpmflwgir3zwzfijfpmahbh2gy5fn5bv5ll86g1szsy";
};
linux_py_35_cpu = {
url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.1.0-cp35-cp35m-manylinux2010_x86_64.whl";
sha256 = "1aa7v9fnvx03hqvhl3x3xcn41qy6qxw5xybg54ifjvvicp455c8l";
}; };
linux_py_36_gpu = { linux_py_36_gpu = {
url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.14.0-cp36-cp36m-linux_x86_64.whl"; url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.1.0-cp36-cp36m-manylinux2010_x86_64.whl";
sha256 = "0ypkp8cfhharsyyikb1qgf44cfm6284km9xswzvzymjzz75vg3gd"; sha256 = "1dqp080ljbl9v3115vjp63ls0fimiwym6zxyanyhrlk8kwsq20zc";
};
linux_py_36_cpu = {
url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.1.0-cp36-cp36m-manylinux2010_x86_64.whl";
sha256 = "133z8anx7xm9rr5i9s9dwnp1wf06nr6s7q1lbs4lxpk6kn9nl480";
}; };
linux_py_37_gpu = { linux_py_37_gpu = {
url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.14.0-cp37-cp37m-linux_x86_64.whl"; url = "https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.1.0-cp37-cp37m-manylinux2010_x86_64.whl";
sha256 = "0virp8nn2ysx4855hq29kas6fm6b3dsiybwzdxy9nnb9n2d8qlm2"; sha256 = "0yabl3xmcpr67w0zksqs3qc68nl9ax0vcd7w7b35nq8f65xl0ghy";
}; };
mac_py_2_cpu = { linux_py_37_cpu = {
url = "https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.14.0-py2-none-any.whl"; url = "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.1.0-cp37-cp37m-manylinux2010_x86_64.whl";
sha256 = "14f86k3pgq7z6i4s4im55zpp38f0drnm7xlclavsgcc0nxnj3z26"; sha256 = "04gngbngyg7p1gwx1q89my0cl8j7lq4kknqh51s2ynrix71zvsy6";
}; };
mac_py_3_cpu = { mac_py_27_cpu = {
url = "https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.14.0-py3-none-any.whl"; url = "https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.1.0-cp27-cp27m-macosx_10_9_x86_64.whl";
sha256 = "0f3swpcjfgqhj6h5wnx8snc0xjkx4hnkqx83fmlrwpncs8c131d3"; sha256 = "1mprp72w5kk0lyjm2mh4lf57827xk3wsg28c4gizwm00ydfgacg6";
};
mac_py_35_cpu = {
url = "https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.1.0-cp35-cp35m-macosx_10_6_intel.whl";
sha256 = "1as7brf5ai6r7v1di9646jfrbnirpk2b0d1g29mn3shavb62kw8w";
};
mac_py_36_cpu = {
url = "https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl";
sha256 = "1v1rw9kjrskhcq1yas4ly2yfnzf2i1pjh6qg6zixfbkpkw7sw3wc";
};
mac_py_37_cpu = {
url = "https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl";
sha256 = "1hh4n0d97mrq35cmmsrnlmcv9vlswsyjy368lj3pda3y9dvck3rf";
}; };
} }

View File

@ -1,33 +1,44 @@
#!/usr/bin/env bash #!/usr/bin/env bash
version=1.14.0 version=2.1.0
# List of binary wheels for Tensorflow. The most recent versions can be found
# on the following page:
# https://www.tensorflow.org/install/pip?lang=python3#package-location
url_and_key_list=(
"linux_py_27_gpu https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-${version}-cp27-cp27mu-manylinux2010_x86_64.whl"
"linux_py_27_cpu https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-${version}-cp27-cp27mu-manylinux2010_x86_64.whl"
"linux_py_35_gpu https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-${version}-cp35-cp35m-manylinux2010_x86_64.whl"
"linux_py_35_cpu https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-${version}-cp35-cp35m-manylinux2010_x86_64.whl"
"linux_py_36_gpu https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-${version}-cp36-cp36m-manylinux2010_x86_64.whl"
"linux_py_36_cpu https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-${version}-cp36-cp36m-manylinux2010_x86_64.whl"
"linux_py_37_gpu https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-${version}-cp37-cp37m-manylinux2010_x86_64.whl"
"linux_py_37_cpu https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-${version}-cp37-cp37m-manylinux2010_x86_64.whl"
"mac_py_27_cpu https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-${version}-cp27-cp27m-macosx_10_9_x86_64.whl"
"mac_py_35_cpu https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-${version}-cp35-cp35m-macosx_10_6_intel.whl"
"mac_py_36_cpu https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-${version}-cp36-cp36m-macosx_10_9_x86_64.whl"
"mac_py_37_cpu https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-${version}-cp37-cp37m-macosx_10_9_x86_64.whl"
)
hashfile=binary-hashes.nix hashfile=binary-hashes.nix
rm -f $hashfile rm -f $hashfile
echo "{" >> $hashfile echo "{" >> $hashfile
echo "version = \"$version\";" >> $hashfile echo "version = \"$version\";" >> $hashfile
for sys in "linux" "mac"; do
for tfpref in "cpu/tensorflow" "gpu/tensorflow_gpu"; do for url_and_key in "${url_and_key_list[@]}"; do
for pykind in "py2-none-any" "py3-none-any" "cp27-none-linux_x86_64" "cp35-cp35m-linux_x86_64" "cp36-cp36m-linux_x86_64" "cp37-cp37m-linux_x86_64"; do key=$(echo "$url_and_key" | cut -d' ' -f1)
if [ $sys == "mac" ]; then url=$(echo "$url_and_key" | cut -d' ' -f2)
[[ $pykind =~ py.* ]] && [[ $tfpref =~ cpu.* ]]
result=$? echo "prefetching ${url}..."
pyver=${pykind:2:1} hash=$(nix-prefetch-url $url)
flavour=cpu
else echo "$key = {" >> $hashfile
[[ $pykind =~ .*linux.* ]] echo " url = \"$url\";" >> $hashfile
result=$? echo " sha256 = \"$hash\";" >> $hashfile
pyver=${pykind:2:2} echo "};" >> $hashfile
flavour=${tfpref:0:3}
fi echo
if [ $result == 0 ]; then
url=https://storage.googleapis.com/tensorflow/$sys/$tfpref-$version-$pykind.whl
hash=$(nix-prefetch-url $url)
echo "${sys}_py_${pyver}_${flavour} = {" >> $hashfile
echo " url = \"$url\";" >> $hashfile
echo " sha256 = \"$hash\";" >> $hashfile
echo "};" >> $hashfile
fi
done
done
done done
echo "}" >> $hashfile echo "}" >> $hashfile
echo "done."