references-by-popularity: cache computation to avoid memory bloat
On very large graphs (14k+ paths), we'd end up with a massive in memory tree of mostly duplication. We can safely cache trees and point back to them later, saving memory.
This commit is contained in:
parent
54826e7471
commit
09362bc3e8
|
@ -338,11 +338,23 @@ class TestMakeLookup(unittest.TestCase):
|
||||||
# /nix/store/tux: {}
|
# /nix/store/tux: {}
|
||||||
# }
|
# }
|
||||||
# }
|
# }
|
||||||
|
subgraphs_cache = {}
|
||||||
def make_graph_segment_from_root(root, lookup):
|
def make_graph_segment_from_root(root, lookup):
|
||||||
|
global subgraphs_cache
|
||||||
children = {}
|
children = {}
|
||||||
for ref in lookup[root]:
|
for ref in lookup[root]:
|
||||||
debug("Making graph segments on {}".format(ref))
|
# make_graph_segment_from_root is a pure function, and will
|
||||||
children[ref] = make_graph_segment_from_root(ref, lookup)
|
# always return the same result based on a given input. Thus,
|
||||||
|
# cache computation.
|
||||||
|
#
|
||||||
|
# Python's assignment will use a pointer, preventing memory
|
||||||
|
# bloat for large graphs.
|
||||||
|
if ref not in subgraphs_cache:
|
||||||
|
debug("Subgraph Cache miss on {}".format(ref))
|
||||||
|
subgraphs_cache[ref] = make_graph_segment_from_root(ref, lookup)
|
||||||
|
else:
|
||||||
|
debug("Subgraph Cache hit on {}".format(ref))
|
||||||
|
children[ref] = subgraphs_cache[ref]
|
||||||
return children
|
return children
|
||||||
|
|
||||||
class TestMakeGraphSegmentFromRoot(unittest.TestCase):
|
class TestMakeGraphSegmentFromRoot(unittest.TestCase):
|
||||||
|
@ -393,13 +405,27 @@ class TestMakeGraphSegmentFromRoot(unittest.TestCase):
|
||||||
# /nix/store/baz: 4
|
# /nix/store/baz: 4
|
||||||
# /nix/store/tux: 6
|
# /nix/store/tux: 6
|
||||||
# ]
|
# ]
|
||||||
|
popularity_cache = {}
|
||||||
def graph_popularity_contest(full_graph):
|
def graph_popularity_contest(full_graph):
|
||||||
|
global popularity_cache
|
||||||
popularity = defaultdict(int)
|
popularity = defaultdict(int)
|
||||||
for path, subgraph in full_graph.items():
|
for path, subgraph in full_graph.items():
|
||||||
debug("Calculating popularity under {}".format(path))
|
|
||||||
popularity[path] += 1
|
popularity[path] += 1
|
||||||
subcontest = graph_popularity_contest(subgraph)
|
# graph_popularity_contest is a pure function, and will
|
||||||
|
# always return the same result based on a given input. Thus,
|
||||||
|
# cache computation.
|
||||||
|
#
|
||||||
|
# Python's assignment will use a pointer, preventing memory
|
||||||
|
# bloat for large graphs.
|
||||||
|
if path not in popularity_cache:
|
||||||
|
debug("Popularity Cache miss on {}", path)
|
||||||
|
popularity_cache[path] = graph_popularity_contest(subgraph)
|
||||||
|
else:
|
||||||
|
debug("Popularity Cache hit on {}", path)
|
||||||
|
|
||||||
|
subcontest = popularity_cache[path]
|
||||||
for subpath, subpopularity in subcontest.items():
|
for subpath, subpopularity in subcontest.items():
|
||||||
|
debug("Calculating popularity for {}", subpath)
|
||||||
popularity[subpath] += subpopularity + 1
|
popularity[subpath] += subpopularity + 1
|
||||||
|
|
||||||
return popularity
|
return popularity
|
||||||
|
|
Loading…
Reference in New Issue