textfiles/anarchy/INCENDIARIES/bomb12.ana

754 lines
37 KiB
Plaintext

]
*> Title: various chemical explosives
*> Date: 5/29/89
*> Time: 12:41 am
[0;31;1m]
[0;32;1m
[0;34;1mPyrotechnics and Explosives - Part I
[0;34;1m4/7/88
[0;34;1m3:33 pm
[0;32;1m
Part 1 Preparation of Contact Explosives
This is part of a series of files on pyrotechnics and explosives. It's serious
stuff, and can be really dangerous if you don't treat it seriously. For you
kids out there who watch too many cartoons, remember that if a part of your
body gets blown away in the REAL world, it STAYS blown away. If you can't
treat this stuff with respect, don't screw around with it.
Each file will start with a set of safety rules. Don't skip over them. Read
'em and MEMORIZE 'em!! At the beginning, there will be a set of general rules
that always apply. Then there will be some things that you HAVE TO KNOW about
the materials you will be using and making this time. Read it thoroughly
before starting anything.
Pyrotechnic preparations and explosives are, by their very nature, unstable,
and subject to ignition by explosion or heat, shock, or friction. A clear
understanding of their dangerous properties and due care in the handling of
ingredients or finished products is necessary if accidents are to be avoided.
Always observe all possible precautions, particularly the following:
1. Mix only small batches at one time. This means a few grams, or at
most, an ounce or so. Don't go for big mixes -- they only make for
bigger accidents. The power of an explosive cubes itself with
every ounce. (9 Ounces is 729 times as powerful as one ounce.)
2. When weighing chemicals, use a clean piece of paper on the scale
pan for each item. Then discard the used paper into a bucket of
water before weighing the next ingredient.
3. Be a safe worker. Dispose of any chemicals spilled on the
workbench or equipment between weighings. Don't keep open
containers of chemicals on your table, since accidental spillage
or mixing may occur. When finished with a container, close it, and
replace it on the storage shelf. Use only clean equipment.
4. Where chemicals are to be ground, grind them separately, NEVER
TOGETHER. Thoroughly wash and clean equipment before grinding
another ingredient.
5. Mixing of batches should be done outdoors, away from flammable
structures, such as buildings, barns, garages, etc. Mixes should
also be made in NON METALLIC containers to avoid sparks. Glass
also should not be used since it will shatter in case of an
accident. Handy small containers can be made by cutting off the
top of a plastic bottle three or four inches from the bottom. Some
mixes may most conveniently be made by placing the ingredients in
a plastic bottle and rolling around until the mixture is uniform.
In all cases, point the open end of the container away from
yourself. Never hold your body or face over the container. Any
stirring should be done with a wooden paddle or stick to avoid
sparks or static.
Powdered or ground materials may also be mixed by placing them on
a large sheet of paper on a flat surface and then rolling them
across the sheet by lifting the sides and corners one at a time.
6. Never ram or tamp mixes into paper or cardboard tubes. Pour the
material in and gently tap or shake the tube to settle the
contents down.
7. Store ingredients and finished mixes where they will not be a fire
hazard away from heat and flame. Finished preparations may be
stored in plastic bottles which will not shatter in case of an
accident. Since many of the ingredients and mixes are poisonous,
they should be stored out of reach of children or pets, preferably
locked away.
8. Be sure threads of screw top containers and caps are thoroughly
cleaned. This applies also to containers with stoppers of rubber
or cork and to all other types of closures. Traces of mixture
caught between the container and closure may be ignited by the
friction of opening or closing the container. Throughout any
procedure, WORK WITH CLEAN CONDITIONS.
9. ALWAYS WEAR A FACE SHIELD OR AT LEAST SHATTERPROOF SAFETY GLASSES.
Any careful worker does when handling dangerous materials. Be sure
lenses and frames are not flammable.
10. Always wear a dust respirator when handling chemicals in dust
form. These small particles gather in your lungs and stay there.
They may cause serious illnesses later on in life.
11. Always wear gloves when working with chemicals.
12. Always wear a waterproof lab apron.
13. If you must work indoors, have a good ventilation system.
14. Never smoke anywhere near where you are working.
15. Make sure there are NO open flames present, and NO MOTORS (they
produce sparks inside.) No hot water heaters, furnaces, or pilot
lights in stoves!! Sparks have been known to very readily explode
dust floating in the air.
16. ALWAYS work with someone. Two heads are better than one.
17. Have a source of water READILY available. (Fire extinguisher,
hose, etc.)
18. Never, under any circumstances, use any metal to load chemicals or
put chemicals in. Fireworks with metal casings are worse to handle
than a live hand grenade. Never use any metal container or can.
This includes the very dangerous CO2 cartridges. Many people have
been KILLED because of flying fragments from metal casings. Again,
please do not use metal in any circumstance.
19. Always be thoroughly familiar with the chemicals you are using.
Some information will be included in each file, but look for
whatever extra information you can. Materials that were once
thought to be safe can later be found out to be dangerous stuff.
20. Wash your hands and face thoroughly after using chemicals. Don't
forget to wash your EARS AND YOUR NOSE.
21. If any device you've built fails to work, leave it alone. After a
half hour or so, you may try to bury it, but never try to unload
or reuse any dud.
22. If dust particles start to form in the air, stop what you are
doing and leave until it settles.
23. Read the entire file before trying to do anything.
24. NEVER strike any mixture containing Chlorates, Nitrates,
Perchlorates, Permanganates, Bichromates, or powdered metals don't
drop them, or even handle them roughly.
These rules may all look like a lot of silly nonsense, but let's look at one
example. When the move "The Wizard of OZ" was made, the actress who played the
good witch was severely burned when one of the exploding special effects got
out of hand. The actress who played the bad witch got really messed up by the
green coloring used on her face, and the original actor who played the Tin Man
got his lungs destroyed by the aluminum dust used to color his face. The actor
we know of as the tin man was actually a replacement. The point is, these
chemicals were being used under the direction of people a lot more knowlegable
of chemicals than you are, and terrible accidents still happened. Don't take
this stuff lightly.
The contact explosives we will be describing use only a few chemicals. Some do
need extra caution to keep from causing trouble.
Iodine Crystals
Though most people don't realize it, Iodine is not a brown liquid, but a
steel-grey solid. The tincture of iodine you buy at the drugstore actually
contains just a tiny bit of iodine dissolved in a jarful of inexpensive
alcohol, and resold at a huge mark up. We'll be using iodine in the crystalline
form. On contact with your skin, it will produce a dark stain that won't wash
off with soap and water. We'll talk about removing these stains later. If it
gets hot, it vaporizes into a purple cloud, that smells like the chlorine in a
swimming pool. This cloud is dangerous to inhale, since it will condense in
your lungs, and is corrosive. Since we won't need to heat this stuff, it is not
a problem, but you should make sure that you don't let any iodine crystals
spill onto a hot surface. If you don't touch it and keep it away from your
face, you shouldn't have any troubles.
Ammonium Hydroxide
This is just good old household ammonia. Be sure to get the clear kind. The
sudsy stuff won't be too useful. It is made from ammonia gas dissolved in
water, and every time you open the bottle, it loses some of its strength, so be
sure to use fresh stuff. We need it to be as strong as possible. Some of the
formulas given here use lab grade concentrated ammonium hydroxide. It is much
stronger than the supermarket kind, and is very unkind to skin or especially
the eyes. It is a good idea to wear eye protection with even the supermarket
grade. Though we don't usually worry about this when using household ammonia
for cleaning, we usually dilute it for that. Here we'll be using it straight
out of the bottle, and it is much more corrosive in that form. Never use this
material if you don't have real good ventilation, as the ammonia vapors can be
overpowering.
Potassium Iodide
This is a reasonably safe chemical. You get Potassium ions in some of the fruit
you eat, and Iodide ions (usually as Sodium Iodide) are added to the table salt
you buy at the store. So, while you don't directly eat this chemical, you do
eat the components that make it up. Don't be scared of this stuff.
Sodium Thiosulfate
Otherwise known as photographic hypo. When dissolved in water, this will remove
the iodine stains left by touching iodine crystals, and exploding contact
explosive. Not particularly nasty stuff, but make sure to wash it off after
cleaning yourself with it.
General Information
This is a powerful and highly sensitive explosive. A dust sized particle will
make a sharp crack or popping sound. A piece the size of a pencil lead will
produce an explosion as loud as any of the largest firecrackers or cherry
bombs. It cannot be exploded by any means when wet, and therefore can be
handled and applied with safety. When dry, it will explode with the touch of a
feather, or a breath of air.
The strength of the ammonia water you use will have a direct effect on the
strength of the final product. If you use supermarket ammonia, the explosive
will work, but not as spectacularly as if you use a 15% or higher (10 to 15
molar) solution. The stronger it is, the better. You'll also need filter paper,
and a funnel. A properly folded coffee filter will do nicely if you don't have
the filter paper. If you're not sure how to fold filter paper, check an
elementary chemistry textbook.
Methods of Preparation
1.) Granular Explosive. This is the easiest kind, and the only kind that will
work reasonably well with supermarket ammonia. Crush enough iodine crystals to
make a pile of powder equal to the volume of a pencil eraser. Do not grind into
a fine powder. Put about 4 ounces or 1/2 measuring cup of strong ammonia water
into a small container with the iodine, and seal it for about 5 to 10 minutes,
shaking frequently. While the mixture is reacting, get your filter paper ready.
While it is best to consult a book that shows how to do this, you take the
circle of filter paper, fold it in half, fold it again at right angles to the
first fold, and then open it to form a cone. Open or close it as needed to make
it conform to the angle of the funnel, and moisten it a little to make it stick
in place. Place the funnel over a container that will catch the waste liquid.
Let the mixture settle long enough for the sediment to settle, and pour off as
much of the clear liquid as possible before filtering the sediment. Pour the
remaining liquid and sediment into the filter. The sediment (and the filter
paper covered with it!!!) is your explosive. The small amount you have made
will go a lot farther than you realize. Particularly if you used good strong
ammonia. Place the explosive in an airtight leakproof pill bottle. As this
explosive is unstable by nature, fresh amounts give better results than stale
ones that have been sitting around for a day or so. Best results are obtained
with small fresh batches. But as you'll see, there are a few tricks you can do
with this material that do require it to sit for a day or more.
The explosive should be stored and applied while wet.
2.) Paint type explosive. This will use up a lot of iodine crystals. Make up a
strong tincture of iodine using about 4 ounces or 1/2 measuring cup of rubbing
alcohol, denatured alcohol, or wood alcohol. Wood alcohol is preferable. Add
iodine crystals and shake thoroughly until no more will dissolve. Pour the
liquid into a fruit jar. Add the ammonium hydroxide and stir the mixture until
the mixture is a chocolate brown and shows a little of the original color of
the iodine. The amount of ammonia necessary will depend on its strength. An
equal volume of ammonia is usually sufficient for a 15% or higher solution. The
solution should be filtered at once, and shouldn't ever wait more than 10 or 15
minutes, because it starts to dissolve again.
The explosive again should be stored and applied while wet. This material is
chemically the same as the granular explosive, but because it was precipitated
from a solution, it is much more finely divided, and the reaction happens
almost simultaneously, so you can get it out before it all vanishes back into
the solution.
3.) Paint type #2. Dissolve 1 gram of potassium iodide in about 90cc of
18%-22% ammonium hydroxide. Add 4 grams of pulverized iodine. A deep black
sediment should start forming. Let stand, and stir frequently for five minutes.
Then, filter as usual. While the potassium iodide is not an integral part of
the chemical reaction, the dissolved potassium iodide will allow the iodine
crystals in turn to dissolve, and its common ion effect will cause less iodine
crystals to be wasted. Since the iodine is by far the most expensive
ingredient, you'll save money in the long run by using it.
Care in Handling And Storage
Because this material is so unstable it deteriorates quickly. Don't make any
more than you need to use in the next 24 hours. If you can't use it all
immediately, the container you keep it in should be recapped tightly after use
and the mouth wiped clean. The explosive can cause dark stain damage to things
as rugs, clothing, chair seats, wallpaper, and light or clear plastics. A
strong solution of sodium thiosulfate is effective for removing stains from
hands and clothing before they set. Never leave the container of explosive in
direct sunlight for more than a few minutes, as it will weaken the strength. Do
NOT attempt to make a large explosion as it is dangerous and can cause
deafness. All equipment used should be thoroughly washed and the used filter
paper flushed down the toilet. Under no circumstances attempt to handle the
dried material which is!Sxtremely explosive and hazardous. If you can avoid
storing the material in a container at all, there will be no chance that a
loose stopper will let the material dry out and become a potential bomb. Tiny
bits of this can be great fun, but it has to be handled with care.
Application
Although largely a scientific curiosity, this explosive finds itself well
suited for practical jokes. It may easily be painted on the bottom side of
light switches, sprinkled on floors, painted in keyholes, pencil sharpeners,
doorknobs and in hundreds of other unsuspected places. It is also ideal for
catching locker thieves and desk prowlers. It will leave a dark stain on his
hands when it explodes, and only you will know how to remove it.
Reaction Equations
Ammonium
Ammonium Ammonium Nitrogen
Iodine Hydroxide Iodide Tri Iodide Water
3I + 5NH OH ---> 3NH I + NH NI + 5H O
2 4 4 3 3 2
The theoretical yield of explosive from pure iodine is 54.1% by weight. The
remainder of the iodine may be recovered for reuse from the ammonium iodide
waste product by evaporating the waste liquid and treating with chlorine if a
chemistry lab is available. The contact explosive is Ammonium Nitrogen
Tri-Iodide, which explodes into iodine, nitrogen, and ammonia.
Ammonium
Nitrigen
Tri-Iodide Iodine Nitrogen Ammonia
2NH NI ---> 3I + N + 2NH
3 3 2 2 3
Some Clever Uses For This Material
1.) Contact Explosive Torpedos. Get some gelatin capsules, the kind pills are
made of. Fill the small half with uncooked dry tapioca until it is half full.
Then place a wet blob of contact explosive about 4 times the size of a straight
pin head on top of it. Either the granular or paint type explosive will work.
The capsule is then filled the rest of the way up with tapioca until, when the
capsule is put together, the grains of tapioca are packed tightly, and none are
loose. If this is not done properly, the torpedos could go off prematurely, and
the joke would be on you. The torpedos are then moistened at the joints to seal
them and stored until the next day. They are not sensitive enough until the
next day and too sensitive the day after, so plan your activities accordingly.
These torpedos are the most fiendish devices made. You can lay one on top of a
door, where it will roll off when the door is opened, and it will explode on
contact with the floor. If you toss one some distance away it will appear as if
someone else was responsible for the explosion. These torpedos are ideal as
booby traps or for pulling practical jokes with. They may be carried in a small
box filled with cotton until needed. Just treat the box gently, and all will be
well.
2.Contact Explosive Booby Traps. Prepare a small amount of contact explosive.
Cut strips of newspaper 1 1/2 inches wide and 1 foot long. Cut a piece of
string 1 foot long. Put a small amount of wet contact explosive on the strip of
paper 1 inch from the end. Double the string. Now pull one end of the string
back until there is a double loop in the string about 1 inch long. Do not tie.
Lay this double loop across the wet contact explosive and tightly roll the
paper and glue the end. Put away for a few days until thoroughly dry. When dry,
pull the ends of the string and the booby trap will explode. The strings, when
pulled, rub against the dry contact explosive, and make it explode.
Getting The Materials
There are quite a few chemical supply houses that you can mail order the
materials you need. You'll have to sign a form stating that you're over 21 and
won't use the chemicals for the types of things we're learning here. Note that
the people who run these supply houses know what Iodine Crystals and Ammonium
Hydroxide can do when mixed together, and if you order both from the same
place, or in the same order, it may arouse some suspicion.
Check the classified ads in the back of magazines like Popular Science for the
current supply houses. Order as many catalogs as you can find. Not all sell
every chemical that you may want for this series. Also, you can break the
orders up so as not to look suspicious. Lastly, some houses are used to selling
to individuals, and will provide chemicals in 1 or 4 ounce lots, while others
prefer to sell to large institutions, and sell their wares in 1 or 5 pound
jugs. Split up your orders according to the quantities of each item you think
you will be needing. An ounce of Iodine Crystals will cost three or four
dollars an ounce, and an ounce bottle of iodine is pretty tiny, but it goes a
long way. If you had to buy that by the pound, you might just want to forget
the whole thing.
Title: Pyro. & Exp. Part 2
Date: 11/1/87
Time: 2:24 pm
PYRO2.TXT Touch Paper, Self Igniting Mixtures, Percussion Explosives
This is part of a series of files on pyrotechnics and explosives. It's serious
stuff, and can be really dangerous if you don't treat it seriously. For you
kids out there who watch too many cartoons, remember that if a part of your
body gets blown away in the REAL world, it STAYS blown away. If you can't
treat this stuff with respect, don't screw around with it.
Each file will start with a set of safety rules. Don't skip over them. Read
'em and MEMORIZE 'em!! At the beginning, there will be a set of general rules
that always apply. Then there will be some things that you HAVE TO KNOW about
the materials you will be using and making this time. Read it thoroughly
before starting anything.
Pyrotechnic preparations and explosives are, by their very nature, unstable,
and subject to ignition by explosion or heat, shock, or friction. A clear
understanding of their dangerous properties and due care in the handling of
ingredients or finished products is necessary if accidents are to be avoided.
Always observe all possible precautions, particularly the following:
We will be using many more chemicals this time, and some can be quite
dangerous. Please read the following information carefully.
Sodium Azide - NaN
3
This white powder is very poisonous. It is also a bit unstable, so treat it
gently.
Lead Nitrate - Pb(NO )
3 2
This contains poisonous lead and is very water soluble so your body will
absorb it quickly, given the chance. The government has banned leaded paints
and is phasing out leaded gasoline because the stuff slowly accumulates in
your body and can screw up all sorts of important innards. If you are careless
with Lead Nitrate you can do a few lifetimes' worth of damage in one
afternoon.
Ammonium Nitrate - NH NO
4 3
Commonly used as fertilizer, this stuff is somewhat dangerous in large
quantities, particularly if it gets very hot. (Entire shiploads of this
material have been known to go up all at once.) When heated gently, it
decomposes into water and nitrous oxide (laughing gas). Farmers sometimes use
it to blow up tree stumps by mixing it with fuel oil and setting the gunk off
with a detonator. We'll have a very different use for it here.
Potassium Nitrate - KNO
3
Also known as saltpeter, this is commercially used as a diuretic for animals.
It also works as an oxidizing agent in various pyrotechnic mixtures. That is,
when heated it provides the oxygen needed to make the rest of the mixture
burn.
Potassium Potassium
Nitrate Nitrite Oxygen
2KNO ---> 2KNO + O
3 2 2
Potassium Chlorate - KClO
3
A much more spectacular oxidizing agent than Potassium Nitrate. It not only
yields more oxygen than Potassium Nitrate, it does so more easily. Pyrotechnic
mixtures containing this chemical will require much less of it, and yet burn
more fiercely. Even percussion can readily set the mixtures off. This can be
useful, but it sometimes makes the mixtures more sensitive than you'd like.
Mixtures containing this chemical must be handled carefully. Potassium
Chlorate is also poisonous.
Potassium Potassium
Chlorate Chloride Oxygen
2KClO ---> 2KCl + 3O
3 2
Aluminum Dust
Very finely divided aluminum. When put in a glass jar, it almost looks like a
solid piece of grey metal. In this form it is flammable. Also, it can
seriously damage your lungs if you inhale it. Be careful not to stir up any
clouds of dust, and it goes without saying that you shouldn't use it near an
open flame.
Zinc Dust
Very finely divided zinc. Not quite as flammable as Aluminum Dust, but still
worth handling carefully. Can also damage your lungs if inhaled.
Lampblack
This is very finely divided carbon, usually obtained as a soot from other
manufacturing processes. It is much more effective in pyrotechnic mixtures
than powdered charcoal. Tiny spots of this are almost unnoticeable, but they
stick to your hands and smear incredibly far. If you're not very tidy you
should expect to find black smears all over your face and hands after using
this.
Sulfur
A yellow powder used as a reducing agent in many pyrotechnic mixtures. Buy
this in the finely powdered form. You can also get it in hard lumps, but these
will just waste extra time as you have to grind them yourself.
Potassium Permanganate
An oxidizing agent that's somewhat less vigorous than others mentioned here.
Not usually used in pyrotechnic mixtures because it's more expensive and less
effective than some of the alternatives. There are a few cases when it's just
the right thing. Don't let this accidentally come in contact with glycerine.
If such an accident happens, the resulting mess should be immediately wiped up
with wet paper towels and buried or flushed down a toilet. It should NOT be
thrown away in a dry waste receptacle!!!
Gum Arabic
A white powder which is mixed with water to make a glue like substance. Useful
for coating various mixtures or binding them together into a solid mass.
Sodium Peroxide
A very strange and dangerous oxidizer. Don't let it get wet and don't let it
touch your skin.
Glycerine
A thick liquid, chemically similar to rubbing alcohol. Though harder to get
burning, it will burn in the right circumstances. Fairly safe stuff.
Iodine Crystals
Pure Iodine is a steel grey solid, which is poisonous and which produses
poisonous vapors when heated. Smells similar to the chlorine used in bleaches
and swimming pools. If you accidentally should drop some on a hot surface and
notice the odor, you should leave the area.
Touch Paper
This is an easily made material that acts like a slow burning fuse and is
ideal for testing small amounts of a pyrotechnic mixture. It is made by
soaking a piece of absorbent paper, like a paper towel, in a saturated
solution of Potassium Nitrate. (A saturated solution means that you have
dissolved as much of the chemical in water as is possible.) Hang the paper up
to dry, and be sure to wipe up any drips. When dry it is ready. Cut off a
small strip and light the edge to see how different it acts from ordinary
paper. This will ignite all but the most stubborn mixtures, and will ignite
gunpowder, which will in turn ignite most anything else.
Don't dip the towel in the Potassium Nitrate solution a second time to try to
make it "stronger". This will actually make it less effective. Some of the
fancier paper towels don't work too well for this. Best results are obtained
from the cheap folded paper towels found in public restrooms everywhere.
Self Igniting Mixtures
Pulverize 1 gram of Potassium Permanganate crystals and place them on an
asbestos board or in an earthenware vessel. Let 2-3 drops of glycerine fall
onto the Potassium Permanganate. The mixture will eventually sizzle and then
flare. Potassium Permanganate is the oxidizing agent. The glycerine is
oxidized so quickly that heat is generated faster than it can be dissipated.
Consequently, the glycerine is ignited. Because this mixture takes so long to
catch on fire, it is sometimes useful when a time delay is needed to set off
some other mixture. If you lose patience with this test, DO NOT THROW THE
MIXTURE AWAY IN A WASTEBASKET!!! Either bury it or flush it down a toilet. I
know of at least one house fire that was started because this was not done.
Given time, this stuff WILL start to burn.
This demonstration produces a very nice effect, but sends out a lot of
poisonous fumes, so do it outside. Make a mound of equal volumes of iodine
crystals and aluminum dust. Make a small indentation at the top of the mound
and add a drop or two of water and move away. It will hiss and burst into
flame, generating thick purple smoke. The fumes are Iodine vapor which is
very caustic, so make sure you are upwind of the fire. Since this is set off
by moisture, you should not store the mixed material. Mix it immediately
before you plan to use it.
Shred a small piece of newspaper and place on it a small amount of sodium
peroxide. Add two drops of hot water. The paper will be ignited. CAUTION: Keep
Sodium Peroxide from moisture and out of contact with organic materials (your
skin, for example.)
Ammonium Nitrate, 5 grams, 1 gram of Ammonium Chloride. Grind these
SEPARATELY, and add 1/4 gram of zinc dust. Form a cone and add 2-4 drops of
water. A bright blue flame with large volumes of smoke forms. Depending on the
quality of your zinc dust, you may need to increase the quantity of zinc.
Since this is ignited by moisture, you should not attempt to store this
mixture.
Percussion Explosives
This section will not only introduce a couple of mixtures with interesting
possibilities, but it will also demonstrate how sensitive mixtures containing
Potassium Chlorate can be. Keep in mind that Chlorate mixtures can be a LOT
more sensitive than the ones shown here.
Mix 1 part by weight of Sulfur, and 3 parts Potassium Chlorate. Each should be
ground separately in a mortar. They should be mixed lightly without any
pressure on a sheet of paper. A small amount of this mixture (less than one
gram!!) placed on a hard surface and struck with a hammer will explode with a
loud report.
Mix the following parts by weight, the same way as above,
Potassium Chlorate 6
Lampblack 4
Sulfur 1
Both of these mixtures are flammable. Mix small quantities only.
Lead Azide Pb(N )
3 2
Unlike many explosives that must be enclosed in a casing to explode, and
others that require a detonator to set them off, Lead Azide will explode in
open air, either due to heat or percussion. Mixed with gum arabic glue, tiny
dots of it are placed under match heads to make trick exploding matches. The
same mixture coated onto 1/2 " wood splinters are used to "load" cigars. In
larger amounts, it is used as a detonator. A moderately light tap will set it
off, making it much more sensitive than the percussion explosives already
mentioned. It is very easy to make.
Take about 1.3 grams of sodium azide and dissolve it in water. It's best not
to use any more water than necessary. In a separate container, dissolve about
3.3 grams of Lead Nitrate, again only using as much water as needed to get it
to dissolve. When the two clear liquids are mixed, a white precipitate of Lead
Azide will settle out of the mixture. Add the Lead Nitrate solution, while
stirring, until no more Lead Azide precipitates out. You may not need to use
it all. Note that the above weights are given only for your convenience if you
have the necessary scales, and give the approximate proportions needed. You
need only continue to mix the solutions until no more precipitate forms.
The precipitate is filtered out and rinsed several times with distilled water.
It is a good idea to store this in its wet form, as it is less sensitive this
way. It's best not to store it if possible, but if you do, you should keep it
in a flexible plastic container that wont produce sharp fragments in case of
an explosion. (NO MORE THAN A GRAM AT A TIME !!!!) Also, make sure that the
mouth of the container is wiped CLEAN before putting the lid on. Just the
shock of removing the lid is enough to set off the dry powder if it is wedged
between the container and the stopper. Don't forget that after you've removed
the precipitate from the filter paper, there will still be enough left to make
the filter paper explosive.
Lead Azide is very powerful as well as very sensitive. Never make more than a
couple of grams at one time.
Reaction Equations
Lead Sodium Lead Sodium
Nitrate Azide Azide Nitrate
Pb(NO ) + 2NaN ---> Pb(N ) + 2NaNO
3 2 3 3 2 3
Don't try to salvage the Sodium Nitrate that's left over (dissolved in the
water). Sodium nitrate is cheap, not really useful for good pyrotechnics, and
this batch will be contaminated with poisonous lead. It's worthless stuff.
Dump it out.
To demonstrate the power of a little bit of Lead Azide, cut out a piece of
touch paper in the following shape
-----------------------------
! !
! !
! ---------------
! !
! ---------------
! !
! !
-----------------------------
Where the size of the wide rectangle is no more than one inch x 1/2 inch, and
the length of the little fuse is at least 3/4 inch. Apply a thin layer of wet
Lead Azide to the large rectangle with a paint brush and let it dry
thoroughly. When done, set this tester out in the open, light the fuse at the
very tip and step back. If done properly, the tiny bit of white powder will
produce a fairly loud explosion.
A Lead Azide Booby Trap
Get some string that's heavy enough so that it won't break when jerked hard. A
couple of feet is enough to test this out. You may want to use a longer piece
depending on what you plan to do with this. Fold a small "Z" shape in the
center of the string, as shown in figure 1. The middle section of the "Z"
should be about one inch long.
-------------------------------------.
.
.
.
--------------------------------------------------
Figure 1. Fold string into a small Z
Next, twist the Z portion together as tightly as you can. Don't worry if it
unwinds a bit when you let go, but it should still stay twisted closely
together. If it doesn't, you will need a different kind of string. Figure 2
tries to show what this will look like.
-------------//////////////////-----------------
Figure 2. Twist the Z portion tightly
Next, apply some wet Lead Azide to the twisted portion with a paint brush. The
Lead Azide should have a bit of Gum Arabic in it to make it sticky. Cut
out a piece of paper, two inches by 6 inches long, wrap it around the twisted
portion, and glue the end on so that it stays put. You should now have a two
inch narrow paper tube with a string sticking out each end, as shown in figure
3.
-------------------------
! !
----------! !-------------------
! !
-------------------------
Figure 3. The completed Booby Trap
You should now set the booby trap aside for at least two weeks so that the
Lead Azide inside can dry completely. Don't try to speed up the process by
heating it. When the two ends of the string are jerked hard, the friction in
the wound up string will set off the Lead Azide. The booby trap can be
attatched to doors, strung out as tripwires, or set up in any other situation
that will cause a quick pull on the strings. Be careful not to use too much
Lead Azide. A little will go a long way. Before trying this on an unsuspecting
soul, make a test booby trap as explained here, tie one end to a long rope,
and set it off from a distance.
The paper wound around the booby trap serves two purposes. It keeps the Lead
Azide from flaking off, and it pads the stuff so it will be less likely to get
set off accidentally. A good vigorous swat will still set it off though, so
store these separately and keep them padded well.
Getting The Chemicals
As always, be sure to use your brains when ordering chemicals from a lab
supply house. Those people KNOW what Sodium Azide and Lead Nitrate make when
mixed together. They also know that someone who orders a bunch of chlorates,
nitrates, metal dusts, sulfur, and the like, probably has mischeif in mind,
and they keep records. So break your orders up, order from different supply
houses, get some friends to order some of the materials, and try to order the
things long before you plan do do anything with them. It's a pain, and the
multiple orders cost a lot in extra shipping charges, but that's what it costs
to cover your tracks. DO it!
[0;32;1mLeeched from The Forbidden Passage (713) 774-0449
[0;32;1m
[0;1m/es
/es
Leached off SSC (713) 497-2312
[5] [General G-files]
(49) Minutes Remaining
(G-Files Menu) Command <?-Help>: [
Downloaded From P-80 International Information Systems 304-744-2253