textfiles/science/fracmath.txt

85 lines
4.5 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

MATHEMATICS OF THE FRACTAL TYPES
Fractal Type(s) Formula(s) used
----------------------- ---------------------------------------------
Mandel, Julia Z(n+1) = Z(n)^2 + C
Newton, Newtbasin (roots of) Z^n - 1, wnere n is an integer
ComplexNewton, ComplexBasin (roots of) Z^a - b, where a,b are complex
plasma (see the Plasma section for details)
Mandelsine, Lambdasine Z(n+1) = Lambda * sine(Z(n)) + C
Mandelcos, Lambdacos Z(n+1) = Lambda * cos(Z(n)) + C
Mandelexp, Lambdaexp Z(n+1) = Lambda * exp(Z(n)) + C
Mandelsinh, Lambdasinh Z(n+1) = Lambda * sinh(Z(n)) + C
Mandelcosh, Lambdacosh Z(n+1) = Lambda * cosh(Z(n)) + C
BarnsleyM1, BarnsleyJ1 Z(n+1) = (Z(n)-1) * C if Real(z) >= 0
else (Z(n)+1) * modulus(C)/C
BarnsleyM2, BarnsleyJ2 Z(n+1) = (Z(n)-1) * C if Real(Z(n))*Imag(C)
+Real(C)*Imag(Z(n)) >= 0
else (Z(n)+1) * C
BarnsleyM3, BarnsleyJ3 Z(n+1) = (Real(Z(n))^2 - Imag(Z(n))^2 - 1)
+ i * (2 * Real(Z((n)) * Imag(Z((n)))
if Real(Z(n) > 0
else (Real(Z(n))^2 - Imag(Z(n))^2 - 1
+ lambda * Real(Z(n))
+ i * (2 * Real(Z((n)) * Imag(Z((n))
+ lambda * Real(Z(n))
Sierpinski Z(n+1) = (2x, 2y - 1) if y > .5
else (2x - 1, 2y) if x > .5
else (2X, 2y)
MandelLambda, Lambda Z(n+1) = (C) * (Z(n)^2) + C
MarksMandel, MarksJulia Z(n+1) = (C^(Period-1)) * (Z(n)^2) + C
("Period" is a parameter)
Unity (see the Unity section for details)
ifs, ifs3D (see the IFS section for details)
Mandel4, Julia4 Z(n+1) = Z(n)^4 + C
Test (as distributed, as simple Mandelbrot fractal)
Mansinzsqrd, Julsinzsqrd Z(n+1) = Z(n)^2 + sin(Z(n)) + C
Manzpower, Julzpower Z(n+1) = Z(n)^M + C (M is a parameter)
Manzzpwr, Julzzpwr Z(n+1) = Z(n)^Z(n) + Z(n)^M + C
Mansinexp, Julsinexp Z(n+1) = sin(Z(n)) + e^(Z(n)) + C
popcorn Z(n+1) = x(n+1) + i * y(n+1), where
x(n+1) = x(n) - 0.05*sin(y(n)) + tan(3*y(n))
y(n+1) = y(n) - 0.05*sin(x(n)) + tan(3*x(n))
demm, demj (Mandelbrot, Julia fractals calculated and
colored using the "Distance Estimator" method
Bifurcation (see the Bifurcation section for details)
Lorenz, Lorenz3d Lorenz Attractor - orbits of differential
equation
x = x + (-a * x * dt) + (a * y * dt)
y = y + (b * x * dt) - (y * dt) - (z * x * dt)
z = z + (-c * z * dt) + (x * y * dt)
(defaults: dt = .02, a = 5, b = 15, c = 1)
(Lorenz3D is the Lorenz Attractor with the
addition of 3D perspective transformations
as specified by the IFS <E>ditor's
transformation option)
The following trig identities are invaluable for coding fractals that
use complex-valued transcendental functions.
e^(x+iy) = (e^x)cos(y) + i(e^x)sin(y)
sin(x+iy) = sin(x)cosh(y) + icos(x)sinh(y)
cos(x+iy) = cos(x)cosh(y) - isin(x)sinh(y)
sinh(x+iy) = sinh(x)cos(y) + icosh(x)sin(y)
cosh(x+iy) = cosh(x)cos(y) + isinh(x)sin(y)
ln(x+iy) = (1/2)ln(x*x + y*y) + i(arctan(y/x) + 2kPi)
(k = 0, +-1, +-2, +-....)
sin(2x) sinh(2y)
tan(x+iy) = ------------------ + i------------------
cos(2x) + cosh(2y) cos(2x) + cosh(2y)
sinh(2x) sin(2y)
tanh(x+iy) = ------------------ + i------------------
cosh(2x) + cos(2y) cosh(2x) + cos(2y)
z^z = e^(log(z)*z)
log(x + iy) = 1/2(log(x*x + y*y) + i(arc_tan(y/x))
e^(x + iy) = (cosh(x) + sinh(x)) * (cos(y) + isin(y))
= e^x * (cos(y) + isin(y))
= (e^x * cos(y)) + i(e^x * sin(y))
Extract from FRACTINT.DOC