85 lines
4.5 KiB
Plaintext
85 lines
4.5 KiB
Plaintext
MATHEMATICS OF THE FRACTAL TYPES
|
||
|
||
|
||
Fractal Type(s) Formula(s) used
|
||
----------------------- ---------------------------------------------
|
||
Mandel, Julia Z(n+1) = Z(n)^2 + C
|
||
Newton, Newtbasin (roots of) Z^n - 1, wnere n is an integer
|
||
ComplexNewton, ComplexBasin (roots of) Z^a - b, where a,b are complex
|
||
plasma (see the Plasma section for details)
|
||
Mandelsine, Lambdasine Z(n+1) = Lambda * sine(Z(n)) + C
|
||
Mandelcos, Lambdacos Z(n+1) = Lambda * cos(Z(n)) + C
|
||
Mandelexp, Lambdaexp Z(n+1) = Lambda * exp(Z(n)) + C
|
||
Mandelsinh, Lambdasinh Z(n+1) = Lambda * sinh(Z(n)) + C
|
||
Mandelcosh, Lambdacosh Z(n+1) = Lambda * cosh(Z(n)) + C
|
||
BarnsleyM1, BarnsleyJ1 Z(n+1) = (Z(n)-1) * C if Real(z) >= 0
|
||
else (Z(n)+1) * modulus(C)/C
|
||
BarnsleyM2, BarnsleyJ2 Z(n+1) = (Z(n)-1) * C if Real(Z(n))*Imag(C)
|
||
+Real(C)*Imag(Z(n)) >= 0
|
||
else (Z(n)+1) * C
|
||
BarnsleyM3, BarnsleyJ3 Z(n+1) = (Real(Z(n))^2 - Imag(Z(n))^2 - 1)
|
||
+ i * (2 * Real(Z((n)) * Imag(Z((n)))
|
||
if Real(Z(n) > 0
|
||
else (Real(Z(n))^2 - Imag(Z(n))^2 - 1
|
||
+ lambda * Real(Z(n))
|
||
+ i * (2 * Real(Z((n)) * Imag(Z((n))
|
||
+ lambda * Real(Z(n))
|
||
Sierpinski Z(n+1) = (2x, 2y - 1) if y > .5
|
||
else (2x - 1, 2y) if x > .5
|
||
else (2X, 2y)
|
||
MandelLambda, Lambda Z(n+1) = (C) * (Z(n)^2) + C
|
||
MarksMandel, MarksJulia Z(n+1) = (C^(Period-1)) * (Z(n)^2) + C
|
||
("Period" is a parameter)
|
||
Unity (see the Unity section for details)
|
||
ifs, ifs3D (see the IFS section for details)
|
||
Mandel4, Julia4 Z(n+1) = Z(n)^4 + C
|
||
Test (as distributed, as simple Mandelbrot fractal)
|
||
Mansinzsqrd, Julsinzsqrd Z(n+1) = Z(n)^2 + sin(Z(n)) + C
|
||
Manzpower, Julzpower Z(n+1) = Z(n)^M + C (M is a parameter)
|
||
Manzzpwr, Julzzpwr Z(n+1) = Z(n)^Z(n) + Z(n)^M + C
|
||
Mansinexp, Julsinexp Z(n+1) = sin(Z(n)) + e^(Z(n)) + C
|
||
popcorn Z(n+1) = x(n+1) + i * y(n+1), where
|
||
x(n+1) = x(n) - 0.05*sin(y(n)) + tan(3*y(n))
|
||
y(n+1) = y(n) - 0.05*sin(x(n)) + tan(3*x(n))
|
||
demm, demj (Mandelbrot, Julia fractals calculated and
|
||
colored using the "Distance Estimator" method
|
||
Bifurcation (see the Bifurcation section for details)
|
||
Lorenz, Lorenz3d Lorenz Attractor - orbits of differential
|
||
equation
|
||
x = x + (-a * x * dt) + (a * y * dt)
|
||
y = y + (b * x * dt) - (y * dt) - (z * x * dt)
|
||
z = z + (-c * z * dt) + (x * y * dt)
|
||
(defaults: dt = .02, a = 5, b = 15, c = 1)
|
||
(Lorenz3D is the Lorenz Attractor with the
|
||
addition of 3D perspective transformations
|
||
as specified by the IFS <E>ditor's
|
||
transformation option)
|
||
|
||
The following trig identities are invaluable for coding fractals that
|
||
use complex-valued transcendental functions.
|
||
|
||
e^(x+iy) = (e^x)cos(y) + i(e^x)sin(y)
|
||
sin(x+iy) = sin(x)cosh(y) + icos(x)sinh(y)
|
||
cos(x+iy) = cos(x)cosh(y) - isin(x)sinh(y)
|
||
sinh(x+iy) = sinh(x)cos(y) + icosh(x)sin(y)
|
||
cosh(x+iy) = cosh(x)cos(y) + isinh(x)sin(y)
|
||
ln(x+iy) = (1/2)ln(x*x + y*y) + i(arctan(y/x) + 2kPi)
|
||
(k = 0, +-1, +-2, +-....)
|
||
|
||
sin(2x) sinh(2y)
|
||
tan(x+iy) = ------------------ + i------------------
|
||
cos(2x) + cosh(2y) cos(2x) + cosh(2y)
|
||
|
||
sinh(2x) sin(2y)
|
||
tanh(x+iy) = ------------------ + i------------------
|
||
cosh(2x) + cos(2y) cosh(2x) + cos(2y)
|
||
|
||
z^z = e^(log(z)*z)
|
||
log(x + iy) = 1/2(log(x*x + y*y) + i(arc_tan(y/x))
|
||
e^(x + iy) = (cosh(x) + sinh(x)) * (cos(y) + isin(y))
|
||
= e^x * (cos(y) + isin(y))
|
||
= (e^x * cos(y)) + i(e^x * sin(y))
|
||
|
||
|
||
Extract from FRACTINT.DOC
|
||
|