1273 lines
55 KiB
Groff
1273 lines
55 KiB
Groff
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍËÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
º PURE MATH CONNECTORS º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
Terms Nx, Egs, and Ess, can be shown to be mathematically
|
||
connected by direct steps which bypass the physical dynamic
|
||
terms. This does not mean the physical dynamic terms do not
|
||
exist, it only means that it is possible to quickly work back
|
||
and forth between Ess, Egs, and Nx, when a few connector rules
|
||
are known. These rules include the following:
|
||
|
||
Given an Nx term:
|
||
|
||
then: Egs = û(1 - 1/Nx)
|
||
and: Nx = root 1/(1 - (Egs)ý)
|
||
and: Ess = root 1 - (Egs)ý
|
||
and: Ess = û(1/Nx) = 1/ûNx
|
||
|
||
These connector rules can be more readily shown in a table,
|
||
as follows:
|
||
|
||
|
||
|
||
TABLE 8
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ FOR EXAMPLE, GIVEN THAT Nx = û3 = 1.732050807 ³
|
||
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
|
||
³ ³
|
||
³ Then: for GRAVITY relativity ³
|
||
³ ³
|
||
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ³
|
||
³ ³ 1 ³
|
||
³ 1. Egs = ³ 1 - ÄÄÄ = .650115167 ³
|
||
³ \³ û3 ³
|
||
³ ³
|
||
³ ³
|
||
³ 1 ³
|
||
³ So that: Nx = ÄÄÄÄÄÄÄÄÄÄÄ = 1.732050807 ³
|
||
³ 1 - (Egs)ý ³
|
||
³ ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
Cont.
|
||
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ ³
|
||
³ Then: for SPECIAL relativity ³
|
||
³ ³
|
||
³ ÚÄÄÄÄÄÄÄÄÄ ³
|
||
³ ³ 1 ³
|
||
³ 2. Ess = ³ ÄÄÄÄ = .759835685 ³
|
||
³ \³ û3 ³
|
||
³ ³
|
||
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
|
||
³ ³
|
||
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ ³
|
||
³ ³ 2G M ³
|
||
³ Ess = ³ ÄÄÄÄÄÄ = .759835685 ³
|
||
³ \³ Cý R ³
|
||
³ ³
|
||
³ ³
|
||
³ 2G M ³
|
||
³ And: Essý = ÄÄÄÄÄÄ = .577350269 ³
|
||
³ Cý R ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
Cont.
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ ³
|
||
³ Essý Cý R ³
|
||
³ So that: M = ÄÄÄÄÄÄÄÄÄÄÄ ³
|
||
³ 2G ³
|
||
³ ³
|
||
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄ ³
|
||
³ And: Ess = \³ 1 - (Egs)ý = .759835685 ³
|
||
³ ³
|
||
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ ³
|
||
³ And: Egs = \³ 1 - (Ess)ý = .650115167 ³
|
||
³ ³
|
||
³ 1 ³
|
||
³ And: Ess = ÄÄÄÄÄ = .759835685 ³
|
||
³ ûNx ³
|
||
³ ³
|
||
³ 1 ³
|
||
³ So that: Nx = ÄÄÄÄÄÄÄ = 1.732050807 ³
|
||
³ (Ess)ý ³
|
||
³ ³
|
||
³ And: Vx = C / 1/Egs = Velocity ³
|
||
³ ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ ³
|
||
³ NOTE: There are specific similar distinctions ³
|
||
³ between the Nx terms for the two relativities, ³
|
||
³ and first given Egs and Ess terms, shown in ³
|
||
³ TABLE 8 as 1, and 2. ³
|
||
³ ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ ³
|
||
³ These above shown pure math permutations are ³
|
||
³ true when given any value for Nx, or Egs, or Ess. ³
|
||
³ ³
|
||
³ With these rules it is possible to freely move back ³
|
||
³ and forth to arrive at key terms for gravitational ³
|
||
³ and special relativites. ³
|
||
³ ³
|
||
³ For instance, given a special effect (Ess) for a ³
|
||
³ body moving at a high velocity, then equivalent ³
|
||
³ gravitational effect (Egs) in relativity is directly ³
|
||
³ known by a single step calculation, for instance ³
|
||
³ by: ³
|
||
³ ³
|
||
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ ³
|
||
³ Egs = \³ 1 - (Ess)ý ³
|
||
³ ³
|
||
³ And what portion the given moving body's mass ³
|
||
³ is to a black hole silent partner equivalent, ³
|
||
³ is directly known by a single step calculation, ³
|
||
³ for instance by: ³
|
||
³ ³
|
||
³ 1 ³
|
||
³ Nx = ÄÄÄÄÄÄ because: Nx = Mbh/M ³
|
||
³ (Ess)ý ³
|
||
³ ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
When dealing with real events which occur at the critical
|
||
mass limit Mc, where then Mbh/Mc = GH (the Golden Harmonic
|
||
Ratio 1.618034), then pure math connectors can appear slightly
|
||
confusing, in that certain pure math factors exactly occur through
|
||
functions of the Golden Ratio, rather than through relativistic
|
||
field dynamics.
|
||
|
||
For instance:
|
||
|
||
|
||
TABLE 9
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ GIVEN THAT Nx = 1.61803398875 = The Golden Ratio ³
|
||
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
|
||
³ Then also: ³
|
||
³ ³
|
||
³ Egs = 1/GH = GH - 1 = .6180339 ³
|
||
³ ³
|
||
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ³
|
||
³ And: Egs = \³ 1 - (Ess)ý = .6180339 ³
|
||
³ ³
|
||
³ ³
|
||
³ And: Nx = Egs + 1 = 1.6180339 ³
|
||
³ ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ ³
|
||
³ And: Ess = ûEgs = .7861514 ³
|
||
³ ³
|
||
³ And: Nx = (Ess x 1/Egs)ý = 1.6180339 ³
|
||
³ ³
|
||
³ And: Nx = Essý + 1 = 1.6180339 ³
|
||
³ ³
|
||
³ Etcetera ³
|
||
³ ³
|
||
³ ³
|
||
³ BUT THESE ARE TRUE ONLY WHEN NX = THE GOLDEN RATIO ³
|
||
³ ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍËÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
º WHY Egs AND Ess ARE INTRINSICALLY RELATED º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
|
||
|
||
In a closer look at the preceding, some
|
||
further facets are learned. In particular:
|
||
|
||
|
||
|
||
EQUATION Z-18
|
||
|
||
|
||
For example: Taking data for Ess and Egs from EQ Z-17-3 ;
|
||
and: M+ from table 6
|
||
then: in EQ Z-18 ;
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
Ess = \³ 1 - (Egs)ý
|
||
|
||
where: M+ = ûNx ; when: Nx = Mbh
|
||
ÄÄÄ ÄÄÄ
|
||
M M
|
||
|
||
and so: in EQ Z-18-1 ;
|
||
|
||
|
||
|
||
|
||
EQUATION Z-18-1
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
Ess of .003161416 = \³ 1 - (.999995002)ý
|
||
|
||
because: (M+/M) = ûNx
|
||
|
||
as when: in EQ Z-18-2 ;
|
||
|
||
|
||
EQUATION Z-18-2
|
||
|
||
|
||
(1.482558107 x 10 to 36 grms)
|
||
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = 316. 313878376 = û100054.469653
|
||
(4.686984066 x 10 to 33 grms)
|
||
|
||
|
||
where: û100054.469653 = ûNx x 100,000
|
||
|
||
because: Nx is ratio 1.000544617404
|
||
and: Mbh / 1.000544617404 gave Mass1 for our study model
|
||
and: Mass1 / 100,000 gave Mass2 for our study model
|
||
|
||
|
||
NOTE: The true value of û(Nx x 100,000) = 316.313865868 =
|
||
û100054.4617404, is slightly departed from the actual Nx
|
||
value for Mass2 shown immediately above. The departure
|
||
is due to intrinsic truncation in accuracy, where a few
|
||
digits are clipped from the tail end of the HIGH special
|
||
relativity Ess term .003161416, and the LOW Egs term
|
||
.999995002.
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±± SPECIFIC CONCLUSIONS ±±±±±±±±±±±±±±±±±±±±± º
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
It is now clear, according to the above derivations which begin
|
||
with EQ T and continue through EQ Z-18-2, that a fundamental
|
||
barrier exists in physics, which limits special relativistic
|
||
effects on a visible moving mass entity to a pre-determinant
|
||
black hole gravitational mass equivalent, gained by a
|
||
pre-determinant limit in velocity.
|
||
|
||
|
||
The pre-determination on the entity is as seen by a stationary
|
||
observer watching the mass entity move at relativistic velocities.
|
||
At its pre-determinant limit in velocity, the mass entity
|
||
transfigures into a black hole and disappears from view.
|
||
|
||
(This does not mean that the black hole cannot keep acceler-
|
||
ating. What it means is that the possibility of such further
|
||
acceleration is not addressed in any way, in the scope of this
|
||
disclosure. This exploration ends with the original radius R
|
||
transfigured into an event horizon R- = R'. And so as an event
|
||
horizon radius R- will thereafter behave in dissimilar ways
|
||
than in the physical form of a radius R. Such dissimilarity
|
||
in behavior of radii is discussed further above at the start
|
||
of Part 2, as Items 1 and 1A under: 'A Comparison Between
|
||
Gravitational and Special Relativity').
|
||
|
||
In outlook, a visible mass is any mass of radius R.
|
||
|
||
The visible mass has to be capable of radiating light to be
|
||
seen in the universe. Its black hole M+ and R- equivalent at
|
||
the relativistic limiting barrier does not radiate light, and
|
||
so no longer physically exists in terms of basic electromagnetic
|
||
radiation.
|
||
|
||
Generally, a visible mass accelerated to relativistic
|
||
velocities cannot achieve a theoretical infinite visible mass,
|
||
and the velocity of the visible mass can never theoretically
|
||
equal the speed of light.
|
||
|
||
The interpreted statements in special relativity which say a
|
||
mass (obviously visible) continues to expand toward infinity,
|
||
and the velocity continues to the speed of light, are wrong, when
|
||
they do not take into consideration the black hole barrier effect.
|
||
|
||
The maximum velocity attainable by a visible moving mass, is
|
||
the speed of light reduced by the proportionate ratio of the
|
||
gravitational relativistic effect of the mass being accelerated.
|
||
|
||
The velocity barrier limit (maximum velocity) possible, is
|
||
restricted by the bounds achieved in special relativistic
|
||
effect when the mass has increased, and its radius has
|
||
contracted, to a point where the moving entity forms a
|
||
black hole and effectively disappears from view.
|
||
|
||
As already said, this point is easily calculated, as
|
||
being the velocity resulting when the speed of light
|
||
is divided by the proportionate effect of the mass's
|
||
gravitational relativistic effect.
|
||
|
||
This point will vary from mass to mass, and from radius to
|
||
radius per given mass, but will inevitably appear somewhere
|
||
before the speed of light is reached, when the visible mass
|
||
is being accelerated to relativistic velocities.
|
||
|
||
A further limiting factor is reached, when the original
|
||
mass factors and augmented mass factors are summed, to
|
||
reach an absolute prior limit at which the total mass
|
||
transforms into a black hole equivalent in single bumps,
|
||
which are proportionate factors of the Golden Harmonic
|
||
Ratio 1.618034.
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±± GENERAL CONCLUSIONS ±±±±±±±±±±±±±±±±± º
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
The fundamental point of view adapted for much of the
|
||
preceding, is to consider that gravitational relativistic
|
||
effects are steady state. Ie., the gravitational source is
|
||
simply sitting there doing its relativistic thing.
|
||
|
||
And so there are no gravitational accelerations of a kind
|
||
which involve motions of points of center, when understanding
|
||
certain of the effect's basic properties, such as the effect
|
||
on the original mass of the gravity causing the effect.
|
||
|
||
Throughout the gravitational relativity explorations of Part 1,
|
||
the perspective was entirely from the perception of different
|
||
mass aggregates being squeezed within the same unchanged radius.
|
||
|
||
In practice, the only radius used was the radius of the
|
||
Sun, as it is presently measured empirically in this solar
|
||
system. That the Sun's radius can be presumed to be reduced
|
||
slightly by the relativistic effect of gravity has been taken
|
||
into consideration, but has not been explored through any of
|
||
the possible permutating effects that changes to the radius
|
||
might have. In short, the studies involved variable densities.
|
||
|
||
The very nature of gravitational relativity implies permuting
|
||
effects due to gravity on all of the parameters involved, for
|
||
instance on all of the terms in EQ W. The sheer magnitude of the
|
||
job of trying to explore all possible combinations of permutations
|
||
involving just R vrs M for this solar system, for instance, has
|
||
not been explored here.
|
||
|
||
Which leaves wide open a very important question. In the
|
||
circumstances so far described, there is no proof that the radius
|
||
of a mass aggregate is the bottom line through which important
|
||
gravitational relativistic manifestations are to be observed.
|
||
This in no way suggests that a proof should not be forthcoming.
|
||
|
||
It so happens that a constant radius (in this case the radius
|
||
of the Sun) is very convenient for displaying many important
|
||
manifestations of gravitational relativity and black hole
|
||
correspondences. It appears to hold together a thread of logic
|
||
though many physically dissimilar events, including standing stark
|
||
still (gravity relativity) and in motion (special relativity).
|
||
|
||
Such stark realism between the relativities would be a hard
|
||
(if not impossible) task to monitor if the confinement radius
|
||
was allowed to be mutable.
|
||
|
||
So, the Sun radius is freely used as a constant
|
||
for exploring different stark manifestations.
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
ÛÄ´ MASS DENSITIES IN A CONSTANT RADIUS ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
It is clear (as shown in many of the preceding demonstrations)
|
||
that the existing Sun radius might in some way be of fundamental
|
||
importance. Not necessarily in core physics of the universe as
|
||
a whole, but at least in core physics of the solar system.
|
||
|
||
|
||
This is seen in the interphased mass congress states involving
|
||
« units of Jupiter's mass, as discussed in Part 1.
|
||
|
||
In the various relativistic explorations, the Sun's radius has
|
||
been willfully maintained as a constant value through different
|
||
discrete changes in mass aggregates studied. (This applies to the
|
||
corresponding planet masses explored, and is not meant to apply
|
||
to any special relativistic effects explored).
|
||
|
||
Dynamically, a change in mass within the same radius usually
|
||
translates into a change in density of the aggregate.
|
||
|
||
In other words, density pressure may be a part of the cause
|
||
and effect, or at least may have originally been a part of
|
||
the cause and effect, prevailing at the time of this solar
|
||
system's formation.
|
||
|
||
This may be a clue regarding the unusual solar characteristics
|
||
observed; where different discrete units of mass (including
|
||
mass particles said to be a part of total mass aggregates)
|
||
are seen externalized as planets orbiting far from the major
|
||
field of the Sun.
|
||
|
||
|
||
The mystery is that the particles are orbiting well
|
||
beyond the significant radius of the inducing effect.
|
||
|
||
The external factors include planet masses which are a
|
||
part of the mass aggregate inducing significant effects.
|
||
One particular planet is Jupiter. Other planets are
|
||
clearly related to the induced effects, but their masses
|
||
do not seem to be included in the mass aggregates. These
|
||
planets are Venus and Mars.
|
||
|
||
It may be that concomitant to gravity relativistic
|
||
effects gained with the Sun's mass, special relativistic
|
||
effects are also gained. But rather than being produced
|
||
in the form of increased mass per se, the special effects
|
||
become produced in the form of velocity which can translate
|
||
directly into angular momentum, resulting in at least some
|
||
of the induced influences being flung into orbit thus carrying
|
||
away discrete units of relativistic effect in the form of
|
||
discrete quantities of angular momentum. This is only a
|
||
thought, probably ridiculous.
|
||
|
||
(In a casual thought, if a gravitational body also
|
||
induces a synonymous relativistic effect (motion) the
|
||
motion has no real way to go forth in itself, since
|
||
ideally all of the effect of motion is equidistantly
|
||
applied to a sphere (the gravitational body). In this
|
||
scenario, the motion portion is thrown off (externalized)
|
||
in order to be expressed).
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ A QUESTION REGARDING RELATIVISTIC ³
|
||
³ MASS EFFECT AND QUASARS ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
These following remark are purely conjectural.
|
||
|
||
Let's suppose that certain relativistic effects induced by
|
||
gravity seem to be incompatible with the basic gravity itself.
|
||
In other words there are two aspects to gravity: the original
|
||
(naked) gravity for any material, and the relativistic effects
|
||
caused by that gravity. In this supposition, some relativistic
|
||
nature cannot exist within the naked nature, and so is
|
||
externalized at long distance.
|
||
|
||
The externalizing is guessed as either by a throwing off
|
||
(forcibly casting forth) or by a remake (as if in leaping
|
||
from here to there, where 'there' is a predetermined position
|
||
in some kind of latent underscore pattern involving the gravity
|
||
field). (In high energy physics, many sub atomic particle
|
||
interactions are depictable as occurring simultaneously in two
|
||
places at once, where an event at one place directly effects
|
||
the event in another place even though nothing but thought
|
||
can transfer between the two places). A third form of ejection
|
||
might be by the simple virtue of an outthrow of discrete bits
|
||
by angular momentum.
|
||
|
||
In the workings of gravitational relativity, several things are
|
||
at issue. There is an original mass, plus the original mass's
|
||
augmentation due to the relativity of the mass's gravity. There
|
||
can also be more mass added into the conglomerate at any time.
|
||
Which results in a hike in the augmentation effect due to
|
||
strengthened relativity.
|
||
|
||
It can be supposed that if an increase in mass takes place within
|
||
a given radius, resulting in a hiked relativistic mass augmentation
|
||
due to the added mass, which in turn causes jitters so that
|
||
something of the hike has to be expunged or externalized from the
|
||
gravity field which is generating the effect in order to satisfy
|
||
an esoteric yearn to solve the jitters, then where added mass is
|
||
accreting into a large black hole some of the relativistic gain
|
||
is transferred to an external position outside the black hole.
|
||
|
||
Since very high energy effects are involved with the black
|
||
hole anyway, it is not difficult to picture that the expunging
|
||
can appear highly energetic. What the mechanism is that could
|
||
transfer the effect to an external place is not here conjectured
|
||
but can be supposed. For instance:
|
||
|
||
A long arm recurrence (here and also there) is one mode.
|
||
|
||
An intense radiating away (or bleeding away) of some of
|
||
the change upon the event horizon boundary, in alternative
|
||
to allowing a change to go ahead in the relativistic regions
|
||
of the boundary size itself, is another mode. This is made more
|
||
viable if it is suggested that the black hole yearns to maintain
|
||
some form of internal density which has no further relativistic
|
||
influence inside the black hole.
|
||
|
||
And finally, a conversion of units of intrinsic spin
|
||
as energy, (conversion from spin to propagational energies),
|
||
is another, if possible.
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ A QUESTION REGARDING RELATIVISTIC ³
|
||
³ EFFECT ON THE GRAVITATIONAL CONSTANT ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
There is also the prospect that the gravitational constant itself
|
||
is modified by the relativistic effect of gravity. In retrospect,
|
||
it is not readily apparent as to whether the gravitational constant
|
||
would weaken, or strengthen, relativistically, given larger and
|
||
larger masses. The present day mode of thought is to consider that
|
||
the gravitational constant might grow relativistically stronger.
|
||
|
||
On the other hand, Equations Y to Y-2 above suggests that
|
||
the gravitational constant relativistically weakens through
|
||
increasing mass aggregates.
|
||
|
||
On yet another hand, it has not been proven that a mass
|
||
relativistically increases (as opposed to decreases) by
|
||
gravitational relativity. A stable picture should ensue,
|
||
albeit not exactly the same as the picture described in
|
||
Equations T through Z-11-4, if a mass decreases by its
|
||
gravitational effect, such that the mass's confining
|
||
radius might increase, or decrease, and the gravitational
|
||
constant also might increase, or decrease, etc.
|
||
|
||
Such possibilities are not considered in the above shown mass
|
||
congresses involving the Sun and certain planet masses. If the
|
||
gravitational constant is in fact modified by relativity, then
|
||
the apparent mass of the Sun is still valid, but the original
|
||
mass should not be precisely that as determined by the apparent
|
||
mass MM, minus the apparent mass times the effect; as shown in
|
||
EQ W-1.
|
||
|
||
In fact all of the parameters of Equation 1 below in APPENDIX B
|
||
(except for the speed of light) might be in states of modification.
|
||
These parameters include G and M, where a mutable value of G therefore
|
||
is internally influencing the value of M.
|
||
|
||
In any case, the resulting gravitational relativistic mass
|
||
congresses between the Sun and planets as viewed herein are
|
||
in their resultant apparent states (involving the masses as
|
||
seen in the domain of the solar system and empirically measured).
|
||
|
||
And finally, the direct tie-ins between gravitational and
|
||
special relativity are balanced correctly anyhow, according
|
||
to the parameter choices selected for the preceding, to
|
||
infer then portray their handshake nature.
|
||
|
||
In a casual thought, if a gravitational body also induces
|
||
a synonymous relativistic effect (motion) the motion has no
|
||
real way to go forth in itself, since ideally all of the
|
||
effect of motion is equidistantly applied to a sphere (the
|
||
gravitational body). In this scenario, the motion portion
|
||
is thrown off (externalized) in order to be expressed.
|
||
|
||
It is not hard to speculate that the special relativistic
|
||
mass gain for the stationary object (gravity source) can be
|
||
(at least in part) thrown off in the form of energy, since
|
||
e=mCý. In which case a lot of energy will be visible per
|
||
small quantities of involved gain in mass.
|
||
|
||
|
||
In this speculation, there is a pure (rather than nuclear)
|
||
conversion of mass to energy.
|
||
|
||
|
||
In unstated allusions are hints that gravity and special relativistic
|
||
effects work hand in hand, with perhaps the special relativity effects
|
||
being more and more suppressed the higher the gravity. But as already
|
||
said, any special relativity associated seems to be incompatible within
|
||
the naked gravity itself and so ends up externalized (for instance) as
|
||
certain planets, as if a velocity is induced in a gravity mass at rest
|
||
which can leave its source, via angular momentum in the velocity.
|
||
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ A QUESTION REGARDS THE GRAVITATIONAL ³
|
||
³ CONSTANT AND THE GOLDEN HARMONIC RATIO ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
|
||
Whereas in another conjectural possibility, going in the other direction,
|
||
it may be possible that the apparent quantum jump in relativistic effects
|
||
seemingly embodied in operators involving the golden section ratio (the
|
||
golden harmonic), do not actually occur in the physical universe.
|
||
|
||
For instance if the universal gravitational constant did change in
|
||
value under increasing relativistic influence, it may result in a
|
||
situation where such things as mass and space increase smoothly toward
|
||
infinity after all, with the quantum leap from a plateau straight to black
|
||
hole parameters smoothed out or voided by relativistic changes in the power
|
||
of the universal gravitational constant.
|
||
|
||
Ho hum, speculations can be rather boring.
|
||
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ APPENDIX A ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
º ELEMENTARY PARTICLE MASSES º
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
In high energy physics experiments, particles such as the
|
||
electron or Proton are being accelerated to velocities said
|
||
to be virtually at the speed of light.
|
||
|
||
How is this possible?
|
||
|
||
This is possible because the Mass/Radius ratio of the proton
|
||
(as an example) is extremely small, compared to the Mass/Radius
|
||
ratio of the Sun for instance. The Mass/Radius ratio of the Sun is:
|
||
|
||
(Mass 1.991 x 10 to 33 grms) / (Radius 6.963 x 10 to 10 cms)
|
||
|
||
= (2.859 x 10 to 22 grms/cms)
|
||
|
||
which itself is very small compared to the ratio of a black hole
|
||
having the Sun's radius, in which the Mass/Radius ratio is then:
|
||
|
||
Mass = (Cý x R) / 2G = (4.689 x 10 to 38 cms)
|
||
|
||
And:
|
||
|
||
(Mass 4.689 x 10 to 38 grms) / (Radius 6.963 x 10 to 10 cms)
|
||
|
||
= (6.735 x 10 to 27 grms/cms) = CR
|
||
|
||
Note that value (6.735 x 10 to 27 grms/cms) = CR is actually
|
||
a physical constant for every black hole, and is equal to the
|
||
ratio of the speed of light divided by twice the universal
|
||
gravitational constant, as in: (Cý/2G) = CR = (Mbh/Rbh)
|
||
when Mbh and Rbh are the Mass and Radius (event horizon) of
|
||
a black hole, C is the speed of light, and G is the universal
|
||
gravitational constant.
|
||
|
||
When, otherwise, a normal M and R are transfigured by special
|
||
relativity into a new black hole having mass M+ and radius R-,
|
||
then: CR = (M+/R-), where, CR still has the constant value:
|
||
(6.735 x 10 to 27 grms/cms).
|
||
|
||
In the large scale world of normal events the magnitude of
|
||
the Sun's mass at (10 to +33 grms) is well above the magnitude
|
||
of the Sun's radius at (10 to +10 cms).
|
||
|
||
In the world of the very small, the situation is
|
||
quite reversed. For example the mass of the proton is:
|
||
|
||
1.672 x 10 to -24 grms
|
||
|
||
whereas its radius is reverse in magnitude,
|
||
in the much larger range said to be about:
|
||
|
||
1.32 x 10 to -13 cms.
|
||
|
||
This produces a Mass/Radius ratio (proton Mass/proton Radius) of:
|
||
|
||
= 1.239 x 10 to -11 grms/cm.
|
||
|
||
Clearly, a proton will have to accelerate to an extremely
|
||
high velocity, virtually to the speed of light, in order
|
||
for special relativistic effects to transfigure the proton's
|
||
effected mass M and radius R into the (M+/R-) = CR parameters
|
||
of a new black hole.
|
||
|
||
The Mass/Radius ratio of the proton will have to grow by a
|
||
magnitude of (5.435 x 10 to the 38), in order for the accelerated
|
||
proton to take on the look of a black hole having mass M+, and
|
||
radius R-, and a (M+/R-) ratio equal to CR.
|
||
|
||
A calculation to determine what velocity the proton needs to
|
||
move in order for the transfiguration, is impossible to complete
|
||
with devices having mediocre accuracies good to only (say) 13
|
||
significant figures.
|
||
|
||
The calculation to determine the proton's velocity first requires
|
||
knowing what the gravitational relativistic effect Eg is for the
|
||
proton's mass and radius. Effect Eg is too small by many magnitudes
|
||
to be mechanically calculated by a device of 13 significant figures.
|
||
Given a device with greater accuracy, the resulting Eg effect for
|
||
the proton is divided into the speed of light, to give the velocity
|
||
at which the proton must travel to relativistically transform into
|
||
a black hole. The velocity will be the same as the speed of light
|
||
to many significant figures, before the digits begin to deviate.
|
||
|
||
(Unless there is (previously unsuspected) a gate in the velocity
|
||
of light, at which a particle (for instance a proton) might in fact
|
||
make a quantum leap to black hole magnetudes at a point that is at
|
||
some measurable factor less than a total 100 percent of the speed
|
||
of light).
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ Proton Comparative Mass Density ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
To give a comparison on just how nebulous is the mass
|
||
density of the Proton (how little in the way of gravity
|
||
that Proton matter presents), the mass density of a Proton
|
||
is on par with about 1 gram of matter wisping in a shell
|
||
whose width is equivalent to 10 times the full diameter
|
||
of the orbit of the Moon around Earth.
|
||
|
||
If the on par Proton mass were gathered together for the protion
|
||
which occupied the actual orbit of the Moon, it would be a moon
|
||
weighing about .48 grams circling the Earth.
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ APPENDIX B ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
º BASIC EQUATIONS º
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
|
||
|
||
Advanced details of a black hole, such as a paradigm model
|
||
of a charge membrane for instance, are not considered.
|
||
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍËÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
º RELATIVISTIC MECHANICS º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
|
||
|
||
EQUATION 1
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
³ 2G M Finding gravitational relativistic
|
||
Eg = ³ 1 Ä ÄÄÄÄÄ effect Eg, for a given mass M and
|
||
\³ Cý R a given radius R
|
||
|
||
|
||
|
||
|
||
EQUATION 2
|
||
|
||
(1 Ä (Eg)ý) x Cý R Finding mass M for a given
|
||
M = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ radius R and a given
|
||
2G relativistic effect Eg
|
||
|
||
|
||
EQUATION 3
|
||
|
||
2G M Finding radius R for a given
|
||
R = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ mass M and a given gravitational
|
||
Cý (1 Ä (Eg)ý) relativistic effect Eg
|
||
|
||
|
||
EQUATION 4
|
||
|
||
2G M Finding the Schwarzschild
|
||
R' = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ radius R' of a black hole's
|
||
Cý event horizon. When effect
|
||
E = 1, then factor (1 Ä (E)ý)
|
||
is 0, which drops from EQ 3
|
||
leaving EQ 4
|
||
|
||
|
||
EQUATION 5
|
||
|
||
Cý R' Finding mass M' needed for a
|
||
M' = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ black hole whose Schwarzschild
|
||
2G radius is given as R'
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍËÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
º GRAVITATIONAL MECHANICS º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
|
||
EQUATION 6
|
||
|
||
Vý R Finding the mass M for
|
||
M = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ sustaining a body orbiting the
|
||
G mass at a given velocity V at
|
||
a given orbiting distance R
|
||
|
||
|
||
EQUATION 7
|
||
|
||
G M Finding the orbit R of a
|
||
R = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ body around a given mass M
|
||
Vý at a given orbital velocity V
|
||
|
||
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ APPENDIX C ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
º PURE MASS CONGRESS º
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
|
||
|
||
This information is presented as a separate tableau and
|
||
has no self evident bearing on any of the explorations
|
||
and conclusions of the above statements. The following
|
||
shows that generally:
|
||
|
||
|
||
(« THE SUM OF THE MASSES OF MERCURY, VENUS, EARTH, MARS),
|
||
PLUS THE MASS OF THE MOON, EQUALS THE MASS OF THE EARTH.
|
||
|
||
|
||
(« the sum of masses N1 to N4) + N5 = N3
|
||
|
||
|
||
TABLE 10
|
||
|
||
Masses + N1 Mercury = .33020 x 10 to 27 grms
|
||
+ N2 Venus = 4.8683 x 10 to 27 grms
|
||
+ N3 Earth = 5.9760 x 10 to 27 grms
|
||
+ N4 Mars = .64181 x 10 to 27 grms
|
||
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
|
||
= 11.81631 x 10 to 27 grms
|
||
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
« = 5.908155 x 10 to 27 grms
|
||
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
+ N5 Moon = .07350 x 10 to 27 grms
|
||
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
|
||
|
||
Equals N3x Earth = 5.981655 x 10 to 27 grms
|
||
|
||
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄ ÄÄÄÄ
|
||
|
||
Inequality N3x - N3 = .005655 x 10 to 27 grms
|
||
|
||
There is an extra (+ .005655 x 10 to 27 grms) in the N3x
|
||
result, which is unexplained. There is no other Moon in
|
||
the inner region of the solar system for instance.
|
||
|
||
|
||
The aggregate mass of the asteroids seems to be too
|
||
small by a factor of 10 to be this inequality. So the
|
||
extra (.005655 x 10 to 27) does not meaningfully represent
|
||
the mass of the asteroids. What the mass inequality may
|
||
represent is not clear at all.
|
||
|
||
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍËÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
º GENERAL MASS CONGRESS (summary)
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
The Sun's mass plus « the mass of Jupiter added, can be shown
|
||
to induce a gravitational relativity mass increase effect which
|
||
is exactly equal to the mass difference between the planets Venus
|
||
and Mars.
|
||
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
³ 2G x (Sun mass + 1/2 Jupiter mass)
|
||
(Sun effect ratio) = ³ 1 Ä ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
\³ Cý x R
|
||
|
||
|
||
C = Speed of light
|
||
G = Gravitational constant
|
||
R = Radius of the Sun
|
||
|
||
|
||
K (Mass augmentation) = Sun mass - [Sun mass x (Sun effect ratio)]
|
||
|
||
K (also equals) = Venus mass - Mars mass
|
||
|
||
|
||
The same result is handled (in a slightly different way)
|
||
in the section beginning with TABLE 1 of file RELATIVE.1 .
|
||
|
||
|
||
See TABLE 11 next below.
|
||
|
||
|
||
TABLE 11
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
³ K = 4.226490 x 10 to 27 grms ³
|
||
³ = (Venus mass - Mars mass) ³
|
||
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
|
||
³ C = 2.99792458 x 10 to 10 cms/sec ³
|
||
³ G = 6.6720 x 10 to -8 cms3/grms secý ³
|
||
³ R = 6.96265 x 10 to 10 cms ³
|
||
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
|
||
³ ³
|
||
³ Planetary masses Data is from Table 1 in ³
|
||
³ the file RELATIVE.1 ³
|
||
³ ³
|
||
³ Moon = .0735 x 10 to 27 grms ³
|
||
³ ³
|
||
³ Venus = 4.8683 x 10 to 27 grms ³
|
||
³ Earth = 5.976 x 10 to 27 grms ³
|
||
³ Mars = 6.4181 x 10 to 26 grms ³
|
||
³ Jupiter = 1.901 x 10 to 30 grms ³
|
||
³ ³
|
||
³ Sun = 1.9888 x 10 to 33 grms ³
|
||
³ ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ APPENDIX D ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
º FOOTNOTES º
|
||
º ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± º
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±± Footnote 1 ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
ÛÄ´ RELATIVITY EQUIVALENCE PRINCIPLE ³
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
|
||
EQUATION Z-21
|
||
|
||
1 - Egý = 1 - Esý
|
||
|
||
|
||
One minus the square of gravity's relativity effect,
|
||
equals one minus the square of special relativity's effect.
|
||
|
||
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
|
||
EQUATION Z-22
|
||
|
||
1 1
|
||
ÄÄÄÄÄÄÄÄÄÄ = ÄÄÄÄÄÄÄ = Nx
|
||
1 - (Eg)ý (Es)ý
|
||
|
||
The reciprocal of one minus the square of gravity's relativity
|
||
effect, equals the reciprocal of the square of special relativity's
|
||
effect.
|
||
|
||
This equality is equal to the ratio of a gravitational mass divided
|
||
into the mass equivalent of a silent black hole partner for the
|
||
gravitational mass.
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±± Footnote 2 ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
There is recent speculation that events in electroweak theory and
|
||
gravitational theory may converge to similar kind at very small
|
||
distances of the order of (10 to -28 cms) to (10 to -33 cms), said
|
||
to be possible at the time of a so called big bang. Whether or not
|
||
the unified field behaviors as disclosed in the above equations are
|
||
favorable or distasteful to such a big bang outlook is not in any
|
||
way considered to be of our concern, here.
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±± Footnote 3 ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
In use of the Sun's radius as a constant confinement delineator for
|
||
various mass aggregates and equivalent black hole masses, it is
|
||
acknowledged that the amount of extra mass poured into the existing
|
||
size of the Sun has to be very large to make a black hole.
|
||
|
||
|
||
For example the amount of mass is about 235,000 times the mass of
|
||
the Sun, poured into the space occupied by the Sun, to make a black
|
||
hole. This is of course physically unrealistic, (that that mass can
|
||
pour into the Sun and the Sun stay the same size). But having a
|
||
constant radius makes it far easier to keep track of various effects.
|
||
|
||
The physical universe is actually quite different. For instance the
|
||
radius of the Sun will dramatically expand with any appreciable amount
|
||
of mass poured into it.
|
||
|
||
But this is iffy. For example if the extra mass is iron, the Sun's area
|
||
will expand according to high material density. If the matter is helium
|
||
or hydrogen, the enlargement of the Sun's radius will be substantially
|
||
more.
|
||
|
||
In either case, since the radius is expanding (with more matter
|
||
poured in), a black hole mass plateau will be eventually reached
|
||
at a much different enlargement in mass than the factor of 235,000
|
||
times mentioned above. As you can see, pinning down parameters into
|
||
'look and see' constants, with this sort of thing going on, is like
|
||
trying to pin down the behavior of silly putty.
|
||
|
||
And so events herein have been scrutinized in detail from the point of
|
||
view of a single unchanged basic radius (the Sun radius), used as a
|
||
convenient point of reference to compare significant related events
|
||
that involve that single radius.
|
||
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±± Footnote 4 ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
The Golden Harmonic Ratio 1.61803398875, cited in this disclosure, is
|
||
an absolute number value gained as (« of û5) plus .5. This number is
|
||
also known as the Golden Section. The number can functionally permutate
|
||
through a bewildering array of directions on its own, with many
|
||
particular permutations appearing in the construction of 5 sided
|
||
geometrical figures. A particularly well known physical manifestation
|
||
of the Golden Section is the proportion of a Golden Rectangle. Other
|
||
well known manifestations include spirals and progressions occurring
|
||
in nature, some based on the Fibonnaci number series. These are said
|
||
to include galaxy spirals and Bode's Law for the solar system, however
|
||
some researchers think the astronomy occurrences appear to be as much
|
||
a case of co-incidence as anything.
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±± Footnote 5 ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
The Constant Ratio CR cited above as being M+/R- = Cý/2G
|
||
also gives instant readout on such curiosity questions as:
|
||
|
||
|
||
|
||
1. How much mass is contained in a black hole whose radius
|
||
is 1 cm? The answer is:
|
||
|
||
|
||
6.735275620 x 10 to 27 grms In that:
|
||
|
||
Cý R Finding mass M needed for a
|
||
M = ÄÄÄÄÄÄÄÄÄÄÄ black hole whose Schwarzschild
|
||
2G radius is given as R = 1 cm
|
||
|
||
Note that the mass has the same
|
||
digital value as ratio CR
|
||
|
||
|
||
|
||
2. What confinement radius is needed for a black hole whose
|
||
mass is 1 grm? The answer is:
|
||
|
||
1.484720234 x 10 to -28 cms Note that this is the digital
|
||
reciprocal of the value of the
|
||
mass M of question 1, in that:
|
||
|
||
2G M Finding the Schwarzschild radius
|
||
R = ÄÄÄÄÄÄÄÄÄÄ R event horizon of a black hole
|
||
Cý whose mass is 1 grm
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±± Footnote 6 ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
In the most unusual circumstance of a velocity ratio V/C being
|
||
equal to a mass proportional ratio M1/M2, then gravitational
|
||
relativistic effect Egs is equal to ratio M2/M1.
|
||
|
||
|
||
For instance, let the ratio of one mass M1 divided
|
||
by a smaller mass M2 be called Rn.
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
³ (C/Rn)ý ³ Vý
|
||
Then: Ess = ³ 1 - ÄÄÄÄÄÄÄ = ³ 1 - ÄÄÄÄ
|
||
\³ Cý \³ Cý
|
||
|
||
|
||
And: Egs = 1/Rn
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±± Footnote 7 ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
In case there is a concern over what has been done above, (in the
|
||
conjecturing of major effects as seen wrapping around changes in
|
||
the rest state of masses through two different synonymous modes of
|
||
relativity), there are no rules that exclude a direct synonymous
|
||
tie-in between both gravitational and special relativistic effects.
|
||
|
||
For example, it has been experimentally confirmed that time slows
|
||
in the proximity of a gravitational field. A main question which
|
||
can be asked is:
|
||
|
||
At what velocity does a mass have to be moving, to induce a
|
||
slowing of time (time dilation), that is equivalent to the
|
||
field effect from the gravity generating a relativistic
|
||
effect of equal magnetude on the flow of time?
|
||
|
||
The time dilation effect of a velocity in special relativity is
|
||
straight forward. That is, at a given velocity, events in time
|
||
for the moving object will seem slowed by a specific amount as
|
||
seen by a stationary observer.
|
||
|
||
In the case of gravity effect, the situation is more ambiguous.
|
||
The effect of time dilation depends on where the object is in the
|
||
vacinity of the field generating the effect. Closer to the field
|
||
means a greater time dilation. But in large scale objects such as
|
||
the Earth or more so the Sun, closeness empirically means close
|
||
to the surface, for example, rather than close to a mathematical
|
||
data point or to a fixed velocity.
|
||
|
||
|
||
In our explorations above, real time positions moving here or there
|
||
in the embraces of a varying gravity field are not at all in the
|
||
picture. The basic 'need to know' speaks through simple statements
|
||
consisting of 'how much mass' in 'how much radius' to result in 'how
|
||
much effect' in the gravity will effect time.
|
||
|
||
The main point of view has been in terms of gravity as a mass source
|
||
extending in a boundry termed the gravity body's radius. In this view,
|
||
events can be measured from the radius and extending outward from the
|
||
radius, according to a mass total located at the radius, where the
|
||
radius itself is measured from a single point of center.
|
||
|
||
In questioning a mass augmentation effect in the gravity, the issue
|
||
can be more clear cut. Specifically, given a finite mass and a finite
|
||
radius, what gravity relativity effect is generated, and how much
|
||
does the effect increase the original mass generating the effect?.
|
||
|
||
From this steady stateness, it is easy to ask across to special
|
||
relativity wishing to know what velocity is required to generate
|
||
an identical effect.
|
||
|
||
However, in closer introspect, a greater question has also been asked.
|
||
And that is, given a mass enhancement and space contraction in special
|
||
relativity, at what velocity does a mass have to be moving in order
|
||
for it to transfigure into a black hole? Looking at things from another
|
||
point of view the question can be put in yet another way; to wit:
|
||
|
||
At what velocity does the mass have to be moving in order
|
||
for special relativistic effect (increasing the mass's mass
|
||
and collapsing its radius) to cause the mass's flow of time
|
||
to come to a standstill? The answer is found in an M+/R- ratio,
|
||
which is calculated through special relativity using the mass's
|
||
gravitational effect to state the equivalent relative velocity.
|
||
|
||
This type of thinking is out in the open in the material of Part 4.
|
||
It is summarized in the relationships enclosed in TABLE 8 under
|
||
'Pure Math Connectors' above.
|
||
|
||
|
||
|
||
|
||
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
|
||
±±±±±±±±±±±±±±±±±±±±±±±±±±±±±± FINISHED ±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
|
||
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
|
||
|
||
|
||
|
||
|
||
|
||
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
Planetary Data is from the following reference source:
|
||
|
||
UNIVERSE by Don Dixon, Houghton Mifflin Co.,
|
||
Boston, 1981 (References found at
|
||
the back of the book)
|
||
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
|
||
|
||
|
||
|
||
|
||
|
||
Signed: Rhae. S. Livingstone
|
||
|
||
|
||
|
||
|
||
|
||
Address: 78072, Cityview, Nepean, Ont, Canada K2G 3J0
|
||
Phone number: Area code: 613 820-9450
|
||
|
||
|
||
|
||
|
||
|
||
|
||
(C) 1990 Introduction to Mass Increases By Gravitational Relativity.
|
||
Rhae S. Livingstone. Canada.
|
||
|
||
|
||
|
||
Copyright March 16, 1990
|
||
All rights reserved.
|
||
|
||
|
||
|
||
|
||
|
||
Peace Power and Plenty everyone.
|
||
|
||
|
||
|
||
|
||
|
||
|
||
ALL DONE
|
||
|