483 lines
32 KiB
Plaintext
483 lines
32 KiB
Plaintext
|
||
PYRO2.TXT Touch Paper, Self Igniting Mixtures, Percussion Explosives
|
||
|
||
This is part of a series of files on pyrotechnics and explosives. It's serious
|
||
stuff, and can be really dangerous if you don't treat it seriously. For you
|
||
kids out there who watch too many cartoons, remember that if a part of your
|
||
body gets blown away in the REAL world, it STAYS blown away. If you can't
|
||
treat this stuff with respect, don't screw around with it.
|
||
|
||
Each file will start with a set of safety rules. Don't skip over them. Read
|
||
'em and MEMORIZE 'em!! At the beginning, there will be a set of general rules
|
||
that always apply. Then there will be some things that you HAVE TO KNOW about
|
||
the materials you will be using and making this time. Read it thoroughly
|
||
before starting anything.
|
||
|
||
Pyrotechnic preparations and explosives are, by their very nature, unstable,
|
||
and subject to ignition by explosion or heat, shock, or friction. A clear
|
||
understanding of their dangerous properties and due care in the handling of
|
||
ingredients or finished products is necessary if accidents are to be avoided.
|
||
Always observe all possible precautions, particularly the following:
|
||
|
||
1. Mix only small batches at one time. This means a few grams, or at
|
||
most, an ounce or so. Don't go for big mixes -- they only make for
|
||
bigger accidents. The power of an explosive cubes itself with
|
||
every ounce. (9 Ounces is 729 times as powerful as one ounce.)
|
||
|
||
2. When weighing chemicals, use a clean piece of paper on the scale
|
||
pan for each item. Then discard the used paper into a bucket of
|
||
water before weighing the next ingredient.
|
||
|
||
3. Be a safe worker. Dispose of any chemicals spilled on the
|
||
workbench or equipment between weighings. Don't keep open
|
||
containers of chemicals on your table, since accidental spillage
|
||
or mixing may occur. When finished with a container, close it, and
|
||
replace it on the storage shelf. Use only clean equipment.
|
||
|
||
4. Where chemicals are to be ground, grind them separately, NEVER
|
||
TOGETHER. Thoroughly wash and clean equipment before grinding
|
||
another ingredient.
|
||
|
||
5. Mixing of batches should be done outdoors, away from flammable
|
||
structures, such as buildings, barns, garages, etc. Mixes should
|
||
also be made in NON METALLIC containers to avoid sparks. Glass
|
||
also should not be used since it will shatter in case of an
|
||
accident. Handy small containers can be made by cutting off the
|
||
top of a plastic bottle three or four inches from the bottom. Some
|
||
mixes may most conveniently be made by placing the ingredients in
|
||
a plastic bottle and rolling around until the mixture is uniform.
|
||
In all cases, point the open end of the container away from
|
||
yourself. Never hold your body or face over the container. Any
|
||
stirring should be done with a wooden paddle or stick to avoid
|
||
sparks or static.
|
||
|
||
Powdered or ground materials may also be mixed by placing them on
|
||
a large sheet of paper on a flat surface and then rolling them
|
||
across the sheet by lifting the sides and corners one at a time.
|
||
|
||
6. Never ram or tamp mixes into paper or cardboard tubes. Pour the
|
||
material in and gently tap or shake the tube to settle the
|
||
contents down.
|
||
|
||
7. Store ingredients and finished mixes where they will not be a fire
|
||
hazard away from heat and flame. Finished preparations may be
|
||
stored in plastic bottles which will not shatter in case of an
|
||
accident. Since many of the ingredients and mixes are poisonous,
|
||
they should be stored out of reach of children or pets, preferably
|
||
locked away.
|
||
|
||
8. Be sure threads of screw top containers and caps are thoroughly
|
||
cleaned. This applies also to containers with stoppers of rubber
|
||
or cork and to all other types of closures. Traces of mixture
|
||
caught between the container and closure may be ignited by the
|
||
friction of opening or closing the container. Throughout any
|
||
procedure, WORK WITH CLEAN CONDITIONS.
|
||
|
||
9. ALWAYS WEAR A FACE SHIELD OR AT LEAST SHATTERPROOF SAFETY GLASSES.
|
||
Any careful worker does when handling dangerous materials. Be sure
|
||
lenses and frames are not flammable.
|
||
|
||
10. Always wear a dust respirator when handling chemicals in dust
|
||
form. These small particles gather in your lungs and stay there.
|
||
They may cause serious illnesses later on in life.
|
||
|
||
11. Always wear gloves when working with chemicals.
|
||
|
||
12. Always wear a waterproof lab apron.
|
||
|
||
13. If you must work indoors, have a good ventilation system.
|
||
|
||
14. Never smoke anywhere near where you are working.
|
||
|
||
15. Make sure there are NO open flames present, and NO MOTORS (they
|
||
produce sparks inside.) No hot water heaters, furnaces, or pilot
|
||
lights in stoves!! Sparks have been known to very readily explode
|
||
dust floating in the air.
|
||
|
||
16. ALWAYS work with someone. Two heads are better than one.
|
||
|
||
17. Have a source of water READILY available. (Fire extinguisher,
|
||
hose, etc.)
|
||
|
||
18. Never, under any circumstances, use any metal to load chemicals or
|
||
put chemicals in. Fireworks with metal casings are worse to handle
|
||
than a live hand grenade. Never use any metal container or can.
|
||
This includes the very dangerous CO2 cartridges. Many people have
|
||
been KILLED because of flying fragments from metal casings. Again,
|
||
please do not use metal in any circumstance.
|
||
|
||
19. Always be thoroughly familiar with the chemicals you are using.
|
||
Some information will be included in each file, but look for
|
||
whatever extra information you can. Materials that were once
|
||
thought to be safe can later be found out to be dangerous stuff.
|
||
|
||
20. Wash your hands and face thoroughly after using chemicals. Don't
|
||
forget to wash your EARS AND YOUR NOSE.
|
||
|
||
21. If any device you've built fails to work, leave it alone. After a
|
||
half hour or so, you may try to bury it, but never try to unload
|
||
or reuse any dud.
|
||
|
||
22. If dust particles start to form in the air, stop what you are
|
||
doing and leave until it settles.
|
||
|
||
23. Read the entire file before trying to do anything.
|
||
|
||
24. NEVER strike any mixture containing Chlorates, Nitrates,
|
||
Perchlorates, Permanganates, Bichromates, or powdered metals don't
|
||
drop them, or even handle them roughly.
|
||
|
||
These rules may all look like a lot of silly nonsense, but let's look at one
|
||
example. When the move "The Wizard of OZ" was made, the actress who played the
|
||
good witch was severely burned when one of the exploding special effects got
|
||
out of hand. The actress who played the bad witch got really messed up by the
|
||
green coloring used on her face, and the original actor who played the Tin Man
|
||
got his lungs destroyed by the aluminum dust used to color his face. The actor
|
||
we know of as the tin man was actually a replacement. The point is, these
|
||
chemicals were being used under the direction of people a lot more knowlegable
|
||
of chemicals than you are, and terrible accidents still happened. Don't take
|
||
this stuff lightly.
|
||
|
||
We will be using many more chemicals this time, and some can be quite
|
||
dangerous. Please read the following information carefully.
|
||
|
||
|
||
Sodium Azide - NaN
|
||
3
|
||
This white powder is very poisonous. It is also a bit unstable, so treat it
|
||
gently.
|
||
|
||
Lead Nitrate - Pb(NO )
|
||
3 2
|
||
This contains poisonous lead and is very water soluble so your body will
|
||
absorb it quickly, given the chance. The government has banned leaded paints
|
||
and is phasing out leaded gasoline because the stuff slowly accumulates in
|
||
your body and can screw up all sorts of important innards. If you are careless
|
||
with Lead Nitrate you can do a few lifetimes' worth of damage in one
|
||
afternoon.
|
||
|
||
Ammonium Nitrate - NH NO
|
||
4 3
|
||
Commonly used as fertilizer, this stuff is somewhat dangerous in large
|
||
quantities, particularly if it gets very hot. (Entire shiploads of this
|
||
material have been known to go up all at once.) When heated gently, it
|
||
decomposes into water and nitrous oxide (laughing gas). Farmers sometimes use
|
||
it to blow up tree stumps by mixing it with fuel oil and setting the gunk off
|
||
with a detonator. We'll have a very different use for it here.
|
||
|
||
Potassium Nitrate - KNO
|
||
3
|
||
Also known as saltpeter, this is commercially used as a diuretic for animals.
|
||
It also works as an oxidizing agent in various pyrotechnic mixtures. That is,
|
||
when heated it provides the oxygen needed to make the rest of the mixture
|
||
burn.
|
||
|
||
Potassium Potassium
|
||
Nitrate Nitrite Oxygen
|
||
|
||
2KNO ---> 2KNO + O
|
||
3 2 2
|
||
|
||
|
||
|
||
Potassium Chlorate - KClO
|
||
3
|
||
A much more spectacular oxidizing agent than Potassium Nitrate. It not only
|
||
yields more oxygen than Potassium Nitrate, it does so more easily. Pyrotechnic
|
||
mixtures containing this chemical will require much less of it, and yet burn
|
||
more fiercely. Even percussion can readily set the mixtures off. This can be
|
||
useful, but it sometimes makes the mixtures more sensitive than you'd like.
|
||
Mixtures containing this chemical must be handled carefully. Potassium
|
||
Chlorate is also poisonous.
|
||
|
||
Potassium Potassium
|
||
Chlorate Chloride Oxygen
|
||
|
||
2KClO ---> 2KCl + 3O
|
||
3 2
|
||
|
||
|
||
Aluminum Dust
|
||
|
||
Very finely divided aluminum. When put in a glass jar, it almost looks like a
|
||
solid piece of grey metal. In this form it is flammable. Also, it can
|
||
seriously damage your lungs if you inhale it. Be careful not to stir up any
|
||
clouds of dust, and it goes without saying that you shouldn't use it near an
|
||
open flame.
|
||
|
||
Zinc Dust
|
||
|
||
Very finely divided zinc. Not quite as flammable as Aluminum Dust, but still
|
||
worth handling carefully. Can also damage your lungs if inhaled.
|
||
|
||
Lampblack
|
||
|
||
This is very finely divided carbon, usually obtained as a soot from other
|
||
manufacturing processes. It is much more effective in pyrotechnic mixtures
|
||
than powdered charcoal. Tiny spots of this are almost unnoticeable, but they
|
||
stick to your hands and smear incredibly far. If you're not very tidy you
|
||
should expect to find black smears all over your face and hands after using
|
||
this.
|
||
|
||
Sulfur
|
||
|
||
A yellow powder used as a reducing agent in many pyrotechnic mixtures. Buy
|
||
this in the finely powdered form. You can also get it in hard lumps, but these
|
||
will just waste extra time as you have to grind them yourself.
|
||
|
||
Potassium Permanganate
|
||
|
||
An oxidizing agent that's somewhat less vigorous than others mentioned here.
|
||
Not usually used in pyrotechnic mixtures because it's more expensive and less
|
||
effective than some of the alternatives. There are a few cases when it's just
|
||
the right thing. Don't let this accidentally come in contact with glycerine.
|
||
If such an accident happens, the resulting mess should be immediately wiped up
|
||
with wet paper towels and buried or flushed down a toilet. It should NOT be
|
||
thrown away in a dry waste receptacle!!!
|
||
|
||
Gum Arabic
|
||
|
||
A white powder which is mixed with water to make a glue like substance. Useful
|
||
for coating various mixtures or binding them together into a solid mass.
|
||
|
||
Sodium Peroxide
|
||
|
||
A very strange and dangerous oxidizer. Don't let it get wet and don't let it
|
||
touch your skin.
|
||
|
||
Glycerine
|
||
|
||
A thick liquid, chemically similar to rubbing alcohol. Though harder to get
|
||
burning, it will burn in the right circumstances. Fairly safe stuff.
|
||
|
||
Iodine Crystals
|
||
|
||
Pure Iodine is a steel grey solid, which is poisonous and which produses
|
||
poisonous vapors when heated. Smells similar to the chlorine used in bleaches
|
||
and swimming pools. If you accidentally should drop some on a hot surface and
|
||
notice the odor, you should leave the area.
|
||
|
||
|
||
|
||
Touch Paper
|
||
|
||
This is an easily made material that acts like a slow burning fuse and is
|
||
ideal for testing small amounts of a pyrotechnic mixture. It is made by
|
||
soaking a piece of absorbent paper, like a paper towel, in a saturated
|
||
solution of Potassium Nitrate. (A saturated solution means that you have
|
||
dissolved as much of the chemical in water as is possible.) Hang the paper up
|
||
to dry, and be sure to wipe up any drips. When dry it is ready. Cut off a
|
||
small strip and light the edge to see how different it acts from ordinary
|
||
paper. This will ignite all but the most stubborn mixtures, and will ignite
|
||
gunpowder, which will in turn ignite most anything else.
|
||
|
||
Don't dip the towel in the Potassium Nitrate solution a second time to try to
|
||
make it "stronger". This will actually make it less effective. Some of the
|
||
fancier paper towels don't work too well for this. Best results are obtained
|
||
from the cheap folded paper towels found in public restrooms everywhere.
|
||
|
||
|
||
Self Igniting Mixtures
|
||
|
||
Pulverize 1 gram of Potassium Permanganate crystals and place them on an
|
||
asbestos board or in an earthenware vessel. Let 2-3 drops of glycerine fall
|
||
onto the Potassium Permanganate. The mixture will eventually sizzle and then
|
||
flare. Potassium Permanganate is the oxidizing agent. The glycerine is
|
||
oxidized so quickly that heat is generated faster than it can be dissipated.
|
||
Consequently, the glycerine is ignited. Because this mixture takes so long to
|
||
catch on fire, it is sometimes useful when a time delay is needed to set off
|
||
some other mixture. If you lose patience with this test, DO NOT THROW THE
|
||
MIXTURE AWAY IN A WASTEBASKET!!! Either bury it or flush it down a toilet. I
|
||
know of at least one house fire that was started because this was not done.
|
||
Given time, this stuff WILL start to burn.
|
||
|
||
This demonstration produces a very nice effect, but sends out a lot of
|
||
poisonous fumes, so do it outside. Make a mound of equal volumes of iodine
|
||
crystals and aluminum dust. Make a small indentation at the top of the mound
|
||
and add a drop or two of water and move away. It will hiss and burst into
|
||
flame, generating thick purple smoke. The fumes are Iodine vapor which is
|
||
very caustic, so make sure you are upwind of the fire. Since this is set off
|
||
by moisture, you should not store the mixed material. Mix it immediately
|
||
before you plan to use it.
|
||
|
||
Shred a small piece of newspaper and place on it a small amount of sodium
|
||
peroxide. Add two drops of hot water. The paper will be ignited. CAUTION: Keep
|
||
Sodium Peroxide from moisture and out of contact with organic materials (your
|
||
skin, for example.)
|
||
|
||
Ammonium Nitrate, 5 grams, 1 gram of Ammonium Chloride. Grind these
|
||
SEPARATELY, and add 1/4 gram of zinc dust. Form a cone and add 2-4 drops of
|
||
water. A bright blue flame with large volumes of smoke forms. Depending on the
|
||
quality of your zinc dust, you may need to increase the quantity of zinc.
|
||
Since this is ignited by moisture, you should not attempt to store this
|
||
mixture.
|
||
|
||
|
||
Percussion Explosives
|
||
|
||
This section will not only introduce a couple of mixtures with interesting
|
||
possibilities, but it will also demonstrate how sensitive mixtures containing
|
||
Potassium Chlorate can be. Keep in mind that Chlorate mixtures can be a LOT
|
||
more sensitive than the ones shown here.
|
||
|
||
|
||
Mix 1 part by weight of Sulfur, and 3 parts Potassium Chlorate. Each should be
|
||
ground separately in a mortar. They should be mixed lightly without any
|
||
pressure on a sheet of paper. A small amount of this mixture (less than one
|
||
gram!!) placed on a hard surface and struck with a hammer will explode with a
|
||
loud report.
|
||
|
||
Mix the following parts by weight, the same way as above,
|
||
|
||
Potassium Chlorate 6
|
||
Lampblack 4
|
||
Sulfur 1
|
||
|
||
Both of these mixtures are flammable. Mix small quantities only.
|
||
|
||
|
||
|
||
Lead Azide Pb(N )
|
||
3 2
|
||
|
||
Unlike many explosives that must be enclosed in a casing to explode, and
|
||
others that require a detonator to set them off, Lead Azide will explode in
|
||
open air, either due to heat or percussion. Mixed with gum arabic glue, tiny
|
||
dots of it are placed under match heads to make trick exploding matches. The
|
||
same mixture coated onto 1/2 " wood splinters are used to "load" cigars. In
|
||
larger amounts, it is used as a detonator. A moderately light tap will set it
|
||
off, making it much more sensitive than the percussion explosives already
|
||
mentioned. It is very easy to make.
|
||
|
||
Take about 1.3 grams of sodium azide and dissolve it in water. It's best not
|
||
to use any more water than necessary. In a separate container, dissolve about
|
||
3.3 grams of Lead Nitrate, again only using as much water as needed to get it
|
||
to dissolve. When the two clear liquids are mixed, a white precipitate of Lead
|
||
Azide will settle out of the mixture. Add the Lead Nitrate solution, while
|
||
stirring, until no more Lead Azide precipitates out. You may not need to use
|
||
it all. Note that the above weights are given only for your convenience if you
|
||
have the necessary scales, and give the approximate proportions needed. You
|
||
need only continue to mix the solutions until no more precipitate forms.
|
||
|
||
The precipitate is filtered out and rinsed several times with distilled water.
|
||
It is a good idea to store this in its wet form, as it is less sensitive this
|
||
way. It's best not to store it if possible, but if you do, you should keep it
|
||
in a flexible plastic container that wont produce sharp fragments in case of
|
||
an explosion. (NO MORE THAN A GRAM AT A TIME !!!!) Also, make sure that the
|
||
mouth of the container is wiped CLEAN before putting the lid on. Just the
|
||
shock of removing the lid is enough to set off the dry powder if it is wedged
|
||
between the container and the stopper. Don't forget that after you've removed
|
||
the precipitate from the filter paper, there will still be enough left to make
|
||
the filter paper explosive.
|
||
|
||
Lead Azide is very powerful as well as very sensitive. Never make more than a
|
||
couple of grams at one time.
|
||
|
||
Reaction Equations
|
||
|
||
Lead Sodium Lead Sodium
|
||
Nitrate Azide Azide Nitrate
|
||
|
||
Pb(NO ) + 2NaN ---> Pb(N ) + 2NaNO
|
||
3 2 3 3 2 3
|
||
|
||
Don't try to salvage the Sodium Nitrate that's left over (dissolved in the
|
||
water). Sodium nitrate is cheap, not really useful for good pyrotechnics, and
|
||
this batch will be contaminated with poisonous lead. It's worthless stuff.
|
||
Dump it out.
|
||
|
||
To demonstrate the power of a little bit of Lead Azide, cut out a piece of
|
||
touch paper in the following shape
|
||
|
||
|
||
|
||
-----------------------------
|
||
! !
|
||
! !
|
||
! ---------------
|
||
! !
|
||
! ---------------
|
||
! !
|
||
! !
|
||
-----------------------------
|
||
|
||
Where the size of the wide rectangle is no more than one inch x 1/2 inch, and
|
||
the length of the little fuse is at least 3/4 inch. Apply a thin layer of wet
|
||
Lead Azide to the large rectangle with a paint brush and let it dry
|
||
thoroughly. When done, set this tester out in the open, light the fuse at the
|
||
very tip and step back. If done properly, the tiny bit of white powder will
|
||
produce a fairly loud explosion.
|
||
|
||
|
||
A Lead Azide Booby Trap
|
||
|
||
Get some string that's heavy enough so that it won't break when jerked hard. A
|
||
couple of feet is enough to test this out. You may want to use a longer piece
|
||
depending on what you plan to do with this. Fold a small "Z" shape in the
|
||
center of the string, as shown in figure 1. The middle section of the "Z"
|
||
should be about one inch long.
|
||
|
||
|
||
-------------------------------------.
|
||
.
|
||
.
|
||
.
|
||
--------------------------------------------------
|
||
|
||
Figure 1. Fold string into a small Z
|
||
|
||
Next, twist the Z portion together as tightly as you can. Don't worry if it
|
||
unwinds a bit when you let go, but it should still stay twisted closely
|
||
together. If it doesn't, you will need a different kind of string. Figure 2
|
||
tries to show what this will look like.
|
||
|
||
|
||
-------------//////////////////-----------------
|
||
|
||
Figure 2. Twist the Z portion tightly
|
||
|
||
Next, apply some wet Lead Azide to the twisted portion with a paint brush. The
|
||
Lead Azide should have a bit of Gum Arabic in it to make it sticky. Cut
|
||
out a piece of paper, two inches by 6 inches long, wrap it around the twisted
|
||
portion, and glue the end on so that it stays put. You should now have a two
|
||
inch narrow paper tube with a string sticking out each end, as shown in figure
|
||
3.
|
||
|
||
-------------------------
|
||
! !
|
||
----------! !-------------------
|
||
! !
|
||
-------------------------
|
||
|
||
Figure 3. The completed Booby Trap
|
||
|
||
You should now set the booby trap aside for at least two weeks so that the
|
||
Lead Azide inside can dry completely. Don't try to speed up the process by
|
||
heating it. When the two ends of the string are jerked hard, the friction in
|
||
the wound up string will set off the Lead Azide. The booby trap can be
|
||
attatched to doors, strung out as tripwires, or set up in any other situation
|
||
that will cause a quick pull on the strings. Be careful not to use too much
|
||
Lead Azide. A little will go a long way. Before trying this on an unsuspecting
|
||
soul, make a test booby trap as explained here, tie one end to a long rope,
|
||
and set it off from a distance.
|
||
|
||
The paper wound around the booby trap serves two purposes. It keeps the Lead
|
||
Azide from flaking off, and it pads the stuff so it will be less likely to get
|
||
set off accidentally. A good vigorous swat will still set it off though, so
|
||
store these separately and keep them padded well.
|
||
|
||
|
||
Getting The Chemicals
|
||
|
||
As always, be sure to use your brains when ordering chemicals from a lab
|
||
supply house. Those people KNOW what Sodium Azide and Lead Nitrate make when
|
||
mixed together. They also know that someone who orders a bunch of chlorates,
|
||
nitrates, metal dusts, sulfur, and the like, probably has mischeif in mind,
|
||
and they keep records. So break your orders up, order from different supply
|
||
houses, get some friends to order some of the materials, and try to order the
|
||
things long before you plan do do anything with them. It's a pain, and the
|
||
multiple orders cost a lot in extra shipping charges, but that's what it costs
|
||
to cover your tracks. DO it!
|
||
|
||
|
||
|