1514 lines
47 KiB
Plaintext
1514 lines
47 KiB
Plaintext
|
||
SIMPLEX LOCKS
|
||
An Illusion of Security
|
||
|
||
Original research and article
|
||
published in 2600, The Hacker Quarterly,
|
||
by Scott Skinner and Emmanuel Goldstein
|
||
|
||
Electronic form created by Magic Man
|
||
|
||
|
||
Courtesy of : -=Restricted -=Data -=Transmissions :
|
||
: :
|
||
: "Truth is cheap, but information costs." :
|
||
|
||
|
||
|
||
About this Article
|
||
==================
|
||
|
||
This article on Simplex locks was originally published in 2600
|
||
magazine, Volume 8, Number 3 (Autumn, 1991). This electronic form
|
||
has created for those people that do not have access to 2600 magazine
|
||
(or have never heard of it!). I HIGHLY suggest that you subscribe --
|
||
It's worth your while to support this magazine. A yearly home
|
||
delivered subscription is $21 for an individual, $50 for a corporate
|
||
subscription. Overseas it's $40 individual, $65 corporate. You can
|
||
reach 2600 on the net by writing mail to: 2600@well.sf.ca.us.
|
||
Subscription Correspondence can be sent to:
|
||
|
||
2600 Subscription Dept.
|
||
P.O. Box 752
|
||
Middle Island, NY
|
||
11953-0099
|
||
|
||
This is NOT the article in its entirety. I left out parts that I
|
||
felt were not of dire need, such as quotes from Simplex personel,
|
||
locksmiths, and Federal Express and other non-essentail information.
|
||
A few sentences have been reworded, and corrections have been made
|
||
that were pointed out in the next issue (Winter 1991/1992).
|
||
|
||
Here it is.. Share the knowledge.
|
||
|
||
-Magic
|
||
magic@atdt.org
|
||
|
||
|
||
Some Background on Simplex Locks
|
||
================================
|
||
|
||
No lock is one hundred percent secure. As any locksmith will tell
|
||
you, even the best lock can be opened if one wishes to invest the time
|
||
and resources. However, a good lock should at least be secure enough
|
||
to prevent the average person from compromising it. Common sense
|
||
dictates that a lock which can easily be opened by anyone is simply
|
||
not a safe lock to use.
|
||
|
||
While an average person may not have the necessary skills and
|
||
expertise to use a lock pick or a blowtorch, almost everyone has the
|
||
ability to count, and the ability to cound is all that is necessary
|
||
to compromise a Unican/Simplex pushbutton lock. In addition, one
|
||
needn't count very high. Only 1081 combinations are used, and in
|
||
most cases this number is reduced considerably.
|
||
|
||
Although Simplex claims that "thousands of combinations are
|
||
available," in truth only 1081 combinations are used. Another 1081
|
||
combinations are available in the guise of "high security half-step
|
||
codes." These are codes which require the user to push one or more
|
||
buttons only halfway. Because of the extreme difficulty in setting
|
||
and using these half-step codes, Simplex advises against their use,
|
||
and in most cases, does not even inform the user that these codes are
|
||
available. Naturally, the addition of 1081 combinations does not
|
||
make the lock considerably more secure. (If 2162 combinations seems
|
||
like a large number, consider that a $5 Master lock has 64,000.)
|
||
|
||
It has been found that nuberous organizations use Simplex locks as a
|
||
primary lock source. Among the guilty parties in the New York
|
||
metropolitan area are Federal Express, United Parcel Service (UPS),
|
||
Citicorp Center, John F. Kennedy International Airport, and the State
|
||
University of New York at Stony Brook. Others around the nation
|
||
include General Motors, the State Department, McDonald's, NSA, and
|
||
the University of Wisconsin.
|
||
|
||
The biggest offender is Federal Express, which uses Simplex locks on
|
||
over 25,000 dropboxes nationally. The dropboxes are particularly
|
||
insecure because Federal Express uses the same combination for all of
|
||
their dropboxes in every state on the east coast! So by opening one
|
||
dropbox, we now have access to thousands.
|
||
|
||
Access was also gained to a UPS dropbox -- in one shot. UPS did not
|
||
even bother to change the default combination which is set by
|
||
Simplex. And, just like Federal Express, UPS figures that a single
|
||
combination is good enough for every dropbox.
|
||
|
||
|
||
Hacking Simplex Locks
|
||
=====================
|
||
|
||
What follows is a list of all possible combinations for Simplex
|
||
locks. They have been divided into four groups acording to how many
|
||
pushbuttons are used. Listed after each group name is the total
|
||
number of combinations in the group. The numbers listed in
|
||
parentheses refer to pushbuttons that must be pressed together. If
|
||
you find that none of the combinations appear to open the lock, then
|
||
it may be a rare instance of a half-step code. In this case, only
|
||
the last number (or numbers if they are in parentheses) should be
|
||
pressed in HALFWAY and held while the knob or latch is turned.
|
||
Slowly press in the pushbutton(s) until you feel pressure. If you
|
||
hear a click then you have pushed the buttons in too far. If all of
|
||
this sounds complicated, then you are beginning to understand why it
|
||
is that Simplex does not recommend the use of half-step codes, and
|
||
subsequently why half-step codes are virtually never used.
|
||
|
||
Simplex locks come in many different shapes, sizes, and colors.
|
||
However, the two models that you will most likely see are the 900 and
|
||
the 1000 series. The characteristic features of the 900 series are
|
||
five black buttons spaced in a circular fashion on a round, metallic
|
||
cylinder. In addition, the 900 series utilizes a latch instead of a
|
||
doorknob. The 1000 series is much larger, with five (usually
|
||
metallic) pushbuttons spaced vertically on a rectangular metal
|
||
chassis. Unlike the 900 series, the 1000 has a doorknob.
|
||
|
||
It is suggested that novices attempt their first hack on a Simplex
|
||
900 model. If the latch is located below the buttons, then the
|
||
procedure is as follows: 1) turn the latch counterclockwise to reset
|
||
the lock; 2) enter a combination from the list; 3) turn the latch
|
||
clockwise to open. If the latch is located above the buttons then
|
||
simply reverse this procedure. Make sure that you reset the lock
|
||
after each try.
|
||
|
||
To hack a 1000 model, simply enter a combination from the list and
|
||
turn the knob clockwise. You will hear clicks as you turn the knob,
|
||
indicating that the lock has been reset. It is sometimes difficult
|
||
to tell when you have cracked a 1000 model by simply turning the
|
||
knob. When you do get the correct code, you will hear a distinctive
|
||
click and feel less pressure as you turn the knob.
|
||
|
||
You will find that turning the latch on a 900 model requires less
|
||
wrist motion and makes much less noise than turning the knob on a
|
||
1000 model. These details seem trivial until you realize that you
|
||
may have to turn the latch or doorknob a few hundred times before you
|
||
crack the lock.
|
||
|
||
It can not be stressed enough how much easier it is when you know the
|
||
range. For instance, if you know that only three digits are being
|
||
used, then you do not have to waste time trying four digits. One way
|
||
to find out the range is to stand nearby while someone punches in the
|
||
code. You will hear distinctive clicks which will give you an idea
|
||
of the range. If you cannot stand nearby then try hiding a voice
|
||
activated tape recorder near the door. The tape recorder will remain
|
||
off until someone comes up to punch in the code. You can then
|
||
retrieve the recorder later at your convenience and listen for the
|
||
telltale clicks. It was found that this method only works in quiet
|
||
areas, such as the inside of a building. Another way to find out the
|
||
range is to take a pencil eraser and carefully rub off a tiny bit of
|
||
rubber on each of the pushbuttons. When someone comes to enter the
|
||
combination, they will rub off the rubber on all of the pushbuttons
|
||
that they use, while leaving telltale traces of rubber on the
|
||
pushbuttons that they do not use. This method works particularly
|
||
well because you eliminate pushbuttons, which drastically reduces the
|
||
number of combinations that must be tried.
|
||
|
||
It has been found that certain ranges tend to be used more than
|
||
others. Group B (three pushbuttons) tends to be used in "low
|
||
security areas," while Groups C and D tend to be used in areas which
|
||
seem like they should be more secure. A lock which uses a
|
||
combination from Group A has never been found. For some reason, the
|
||
1000 series mostly uses Group C (four pushbuttons). In addition,
|
||
most combiniations tend to be "doubles," which require at least two
|
||
of the pushbuttons to be pressed together. When you decide on a
|
||
particular range to start with, try the doubles first. For instance,
|
||
try "(12)345" before you try "12345." A lock which uses a triple,
|
||
quadruple, or all five pushbuttons pressed at the same time has never
|
||
been found.
|
||
|
||
Although a list of all the possible combinations is provided, you may
|
||
find it useful to invest some time and record these codes onto
|
||
cassette. This makes it much easier for one person to hack a Simplex
|
||
lock. A walkman looks far less conspicuous than sheets of paper
|
||
filled with numbers.
|
||
|
||
Finally, it is always good to take a few lucky shots before
|
||
initiating a brute force hack. Always try the default combination
|
||
"(24)3" before trying anything else. Above all, DON'T give up!
|
||
Even if you do not get the combination in ten minutes, you are still
|
||
that much closer to figuring it out. It is recommended that you do
|
||
not stress yourself out trying every combination in one shot. A few
|
||
minutes a day will do just fine, and the thrill of achievement will
|
||
be well worth the wait.
|
||
|
||
|
||
Changing Combinations on the 900 Series
|
||
=======================================
|
||
|
||
You may change combinations to any sequence you wish, using any or
|
||
all buttons, in any order, separately or pushed at the same time with
|
||
other buttons. You cannot use the same button more than once in a
|
||
combination.
|
||
|
||
1) With the door OPEN and the Simplex LOCKED, turn the FRONT CONTROL
|
||
KNOB (marked "Simplex") to the LEFT, and RELEASE. Push the EXISTING
|
||
combination and RELEASE the buttons.
|
||
|
||
2) Remove the screw in the Lock Housing with an Allen wrench.
|
||
Insert the wrench into the screw hole and depress button within.
|
||
Remove wrench.
|
||
|
||
3) Turn the front control knob (marked "Simplex") to the LEFT, and
|
||
RELEASE.
|
||
|
||
4) Press the buttons in the sequence desired for your new
|
||
combination. Record your new combination.
|
||
|
||
5) Turn the front control knob RIGHT. Your new combination is now
|
||
installed. Before shutting the door, try it to be sure you have
|
||
recorded it correctly. Replace the threaded screw in the Lock
|
||
Housing.
|
||
|
||
NOTE: If the front control knob opens the lock without pushing the
|
||
combination, steps 3, 4, and 5 were performed out of order and your
|
||
Simplex is in a "0" combination. To reinstall a combination, follow
|
||
the above steps above, but omit step #1.
|
||
|
||
|
||
All possible Simplex Combinations
|
||
=================================
|
||
Note: Numbers in parentheses should be pressed together
|
||
|
||
GROUP A: GROUP B: 423 (34)5 (234) 2354
|
||
35 130 425 (35)1 (235) 2413
|
||
431 (35)2 (245) 2415
|
||
1 123 432 (35)4 (345) 2431
|
||
2 124 435 (45)1 2435
|
||
3 125 451 (45)2 GROUP C: 2451
|
||
4 132 452 (45)3 375 2453
|
||
5 134 453 3(12) 2513
|
||
12 135 512 4(12) 1234 2514
|
||
13 142 513 5(12) 1235 2531
|
||
14 143 514 2(13) 1243 2534
|
||
15 145 521 4(13) 1245 2541
|
||
21 152 523 5(13) 1253 2543
|
||
23 153 524 2(14) 1254 3124
|
||
24 154 531 3(14) 1324 3125
|
||
25 213 532 5(14) 1325 3142
|
||
31 214 534 2(15) 1342 3145
|
||
32 215 541 3(15) 1345 3152
|
||
34 231 542 4(15) 1352 3154
|
||
35 234 543 1(23) 1354 3214
|
||
41 235 (12)3 4(23) 1423 3215
|
||
42 241 (12)4 5(23) 1425 3241
|
||
43 243 (12)5 1(24) 1432 3245
|
||
45 245 (13)2 3(24) 1435 3251
|
||
51 251 (13)4 5(24) 1452 3254
|
||
52 253 (13)5 1(25) 1453 3412
|
||
53 254 (14)2 3(25) 1523 3415
|
||
54 312 (14)3 4(25) 1524 3421
|
||
(12) 314 (14)5 1(34) 1532 3425
|
||
(13) 315 (15)2 2(34) 1534 3451
|
||
(14) 321 (15)3 5(34) 1542 3452
|
||
(15) 324 (15)4 1(35) 1543 3512
|
||
(23) 325 (23)1 2(35) 2134 3514
|
||
(24) 341 (23)4 4(35) 2135 3521
|
||
(25) 342 (23)5 1(45) 2143 3524
|
||
(34) 345 (24)1 2(45) 2145 3541
|
||
(35) 351 (24)3 3(45) 2153 3542
|
||
(45) 352 (24)5 (123) 2154 4123
|
||
354 (25)1 (124) 2314 4125
|
||
412 (25)3 (125) 2315 4132
|
||
413 (25)4 (134) 2341 4135
|
||
415 (34)1 (135) 2345 4152
|
||
421 (34)2 (145) 2351 4153
|
||
|
||
|
||
4213 (12)54 (35)41 3(25)4 41(23) (23)(15)
|
||
4215 (13)24 (35)42 4(25)1 45(23) (23)(45)
|
||
4231 (13)25 (45)12 4(25)3 51(23) (24)(13)
|
||
4235 (13)42 (45)13 1(34)2 54(23) (24)(15)
|
||
4251 (13)45 (45)21 1(34)5 13(24) (24)(35)
|
||
4253 (13)52 (45)23 2(34)1 15(24) (25)(13)
|
||
4312 (13)54 (45)31 2(34)5 31(24) (25)(14)
|
||
4315 (14)23 (45)32 5(34)1 35(24) (25)(34)
|
||
4321 (14)25 3(12)4 5(34)2 51(24) (34)(12)
|
||
4325 (14)32 3(12)5 1(35)2 53(24) (34)(15)
|
||
4351 (14)35 4(12)3 1(35)4 13(25) (34)(25)
|
||
4352 (14)52 4(12)5 2(35)1 14(25) (35)(12)
|
||
4512 (14)53 5(12)3 2(35)4 31(25) (35)(14)
|
||
4513 (15)23 5(12)4 4(35)1 34(25) (35)(24)
|
||
4521 (15)24 2(13)4 4(35)2 41(25) (45)(12)
|
||
4523 (15)32 2(13)5 1(45)2 43(25) (45)(13)
|
||
4531 (15)34 4(13)2 1(45)3 12(34) (45)(23)
|
||
4532 (15)42 4(13)5 2(45)1 15(34) (123)4
|
||
5123 (15)43 5(13)2 2(45)3 21(34) (123)5
|
||
5124 (23)14 5(13)4 3(45)1 25(34) (124)3
|
||
5132 (23)15 2(14)3 3(45)2 51(34) (124)5
|
||
5134 (23)41 2(14)5 34(12) 52(34) (125)3
|
||
5142 (23)45 3(14)2 35(12) 12(35) (125)4
|
||
5143 (23)51 3(14)5 43(12) 14(35) (134)2
|
||
5213 (23)54 5(14)2 45(12) 21(35) (134)5
|
||
5214 (24)13 5(14)3 53(12) 24(35) (135)2
|
||
5231 (24)15 2(15)3 54(12) 41(35) (135)4
|
||
5234 (24)31 2(15)4 24(13) 42(35) (145)2
|
||
5241 (24)35 3(15)2 25(13) 12(45) (145)3
|
||
5243 (24)51 3(15)4 42(13) 13(45) (234)1
|
||
5312 (24)53 4(15)2 45(13) 21(45) (234)5
|
||
5314 (25)13 4(15)3 52(13) 23(45) (235)1
|
||
5321 (25)14 1(23)4 54(13) 31(45) (235)4
|
||
5324 (25)31 1(23)5 23(14) 32(45) (245)1
|
||
5341 (25)34 4(23)1 25(14) (12)(34) (245)3
|
||
5342 (25)41 4(23)5 32(14) (12)(35) (345)1
|
||
5412 (25)43 5(23)1 35(14) (12)(45) (345)2
|
||
5413 (34)12 5(23)4 52(14) (13)(24) 4(123)
|
||
5421 (34)15 1(24)3 53(14) (13)(25) 5(123)
|
||
5423 (34)21 1(24)5 23(15) (13)(45) 3(124)
|
||
5431 (34)25 3(24)1 24(15) (14)(23) 5(124)
|
||
5432 (34)51 3(24)5 32(15) (14)(25) 3(125)
|
||
(12)34 (34)52 5(24)1 34(15) (14)(35) 4(125)
|
||
(12)35 (35)12 5(24)3 42(15) (15)(23) 2(134)
|
||
(12)43 (35)14 1(25)3 43(15) (15)(24) 5(134)
|
||
(12)45 (35)21 1(25)4 14(23) (15)(34) 2(135)
|
||
(12)53 (35)24 3(25)1 15(23) (23)(14) 4(135)
|
||
|
||
|
||
|
||
2(145) 21534 41325 (12)435 (35)142 1(25)34
|
||
3(145) 21543 41523 (12)453 (35)214 1(25)43
|
||
1(234) 23451 41532 (12)534 (35)241 3(25)14
|
||
5(234) 23415 42315 (12)543 (35)412 3(25)41
|
||
1(245) 23514 42351 (13)245 (35)421 4(25)13
|
||
4(235) 23541 42513 (13)254 (45)123 4(25)31
|
||
1(245) 23145 42531 (13)425 (45)132 1(34)25
|
||
3(245) 23154 42135 (13)452 (45)213 1(34)52
|
||
1(345) 24513 42153 (13)524 (45)231 2(34)15
|
||
2(345) 24531 43512 (13)542 (45)312 2(34)51
|
||
(1234) 24135 43521 (14)235 (45)321 5(34)12
|
||
(1235) 24153 43125 (14)253 3(12)45 5(34)21
|
||
(1245) 24351 43152 (14)325 3(12)54 1(35)24
|
||
(1345) 24315 43215 (14)352 4(12)35 1(35)42
|
||
(2345) 25134 43251 (14)523 4(12)53 2(35)14
|
||
25143 45123 (14)532 5(12)34 2(35)41
|
||
GROUP D: 25341 45132 (15)234 5(12)43 4(35)12
|
||
541 25314 45213 (15)243 2(13)45 4(35)21
|
||
25413 45231 (15)324 2(13)54 1(45)23
|
||
12345 25431 45312 (15)342 4(13)25 1(45)32
|
||
12354 31245 45321 (15)423 4(13)52 2(45)13
|
||
12453 31254 51234 (15)432 5(13)24 2(45)31
|
||
12435 31452 51243 (23)145 5(13)42 3(45)12
|
||
12534 31425 51324 (23)154 2(14)35 3(45)21
|
||
12543 31524 51342 (23)415 2(14)53 34(12)5
|
||
13452 31542 51423 (23)451 3(14)25 35(12)4
|
||
13425 32451 51432 (23)514 3(14)52 43(12)5
|
||
13524 32415 52314 (23)541 5(14)23 45(12)3
|
||
13542 32514 52341 (24)135 5(14)32 53(12)4
|
||
13245 32541 52413 (24)153 2(15)34 54(12)3
|
||
13254 32145 52431 (24)315 2(15)43 24(13)5
|
||
14523 32154 52134 (24)351 3(15)24 25(13)4
|
||
14532 34512 52143 (24)513 3(15)42 42(13)5
|
||
14235 34521 53412 (24)531 4(15)23 45(13)2
|
||
14253 34125 53421 (25)134 4(15)32 52(13)4
|
||
14352 34152 53124 (25)143 1(23)45 54(13)2
|
||
14325 34251 53142 (25)314 1(23)54 23(14)5
|
||
15234 34215 53214 (25)341 4(23)15 25(14)3
|
||
15243 35124 53241 (25)413 4(23)51 32(14)5
|
||
15342 35142 54123 (25)431 5(23)14 35(14)2
|
||
15324 35241 54132 (34)125 5(23)41 52(14)3
|
||
15423 35214 54213 (34)152 1(24)35 53(14)2
|
||
15432 35412 54231 (34)215 1(24)53 23(15)4
|
||
21345 35421 54312 (34)251 3(24)15 24(15)3
|
||
21354 41235 54321 (34)512 3(24)51 32(15)4
|
||
21453 41253 (12)345 (34)521 5(24)13 34(15)2
|
||
21435 41352 (12)354 (35)124 5(24)31 42(15)3
|
||
|
||
|
||
43(15)2 524(13) 231(45) (23)1(45) (123)54 24(135)
|
||
14(23)5 542(13) 312(45) (24)5(13) (124)35 42(135)
|
||
15(23)4 235(14) 321(45) (24)3(15) (124)53 23(145)
|
||
41(23)5 253(14) (12)(34)5 (24)1(35) (125)34 32(145)
|
||
45(23)1 325(14) (12)(35)4 (25)4(13) (125)43 15(234)
|
||
51(23)4 352(14) (12)(45)3 (25)3(14) (134)25 51(234)
|
||
54(23)1 523(14) (13)(24)5 (25)1(34) (134)52 14(235)
|
||
13(24)5 532(14) (13)(25)4 (34)5(12) (135)24 41(235)
|
||
15(24)3 234(15) (13)(45)2 (34)2(15) (135)42 13(245)
|
||
31(24)5 243(15) (14)(23)5 (34)1(25) (145)23 31(245)
|
||
35(24)1 324(15) (14)(25)3 (35)4(12) (145)32 12(345)
|
||
51(24)3 342(15) (14)(35)2 (35)2(14) (234)51 21(345)
|
||
53(24)1 423(15) (15)(23)4 (35)1(24) (234)15 (123)(45)
|
||
13(25)4 432(15) (15)(24)3 (45)3(12) (235)14 (124)(35)
|
||
14(25)3 145(23) (15)(34)2 (45)2(13) (235)41 (125)(34)
|
||
31(25)4 154(23) (23)(14)5 (45)1(23) (245)13 (134)(25)
|
||
34(25)1 415(23) (23)(15)4 3(12)(45) (245)31 (135)(24)
|
||
41(25)3 451(23) (23)(45)1 4(12)(35) (345)12 (145)(23)
|
||
43(25)1 514(23) (24)(13)5 5(12)(34) (345)21 (234)(15)
|
||
12(34)5 541(23) (24)(15)3 2(13)(45) 4(123)5 (235)(14)
|
||
15(34)2 135(24) (24)(35)1 4(13)(25) 5(123)4 (245)(13)
|
||
21(34)5 153(24) (25)(13)4 5(13)(24) 3(124)5 (345)(12)
|
||
25(34)1 315(24) (25)(14)3 2(14)(35) 5(124)3 (45)(123)
|
||
51(34)2 351(24) (25)(34)1 3(14)(25) 3(125)4 (35)(124)
|
||
52(34)1 513(24) (34)(12)5 5(14)(23) 4(125)3 (34)(125)
|
||
12(35)4 531(24) (34)(15)2 2(15)(34) 2(134)5 (25)(134)
|
||
14(35)2 134(25) (34)(25)1 3(15)(24) 5(134)2 (24)(135)
|
||
21(35)4 143(25) (35)(12)4 4(15)(23) 2(135)4 (23)(145)
|
||
24(35)1 314(25) (35)(14)2 4(23)(45) 4(135)2 (15)(234)
|
||
41(35)2 341(25) (35)(24)1 4(23)(15) 2(145)3 (14)(235)
|
||
42(35)1 413(25) (45)(12)3 5(23)(14) 3(145)2 (13)(245)
|
||
13(45)2 431(25) (45)(13)2 1(24)(35) 1(234)5 (12)(345)
|
||
12(45)3 125(34) (45)(23)1 3(24)(15) 5(234)1 (1234)5
|
||
21(45)3 152(34) (12)5(34) 5(24)(13) 1(235)4 (1235)4
|
||
23(45)1 215(34) (12)4(35) 1(25)(34) 4(235)1 (1245)3
|
||
31(45)2 251(34) (12)3(45) 3(25)(14) 1(245)3 (1345)2
|
||
32(45)1 512(34) (13)5(24) 4(25)(13) 3(245)1 (2345)1
|
||
345(12) 521(34) (13)4(25) 1(34)(25) 1(345)2 5(1234)
|
||
354(12) 124(35) (13)2(45) 2(34)(15) 2(345)1 4(1235)
|
||
435(12) 142(35) (14)5(23) 5(34)(12) 45(123) 3(1245)
|
||
453(12) 214(35) (14)3(25) 1(35)(24) 54(123) 2(1345)
|
||
534(12) 241(35) (14)2(35) 2(35)(14) 35(124) 1(2345)
|
||
543(12) 412(35) (15)4(23) 4(35)(12) 53(124) (12345)
|
||
245(13) 421(35) (15)3(24) 1(45)(23) 34(125)
|
||
254(13) 123(45) (15)2(34) 2(45)(13) 43(125)
|
||
425(13) 132(45) (23)5(14) 3(45)(12) 25(134)
|
||
452(13) 213(45) (23)4(15) (123)45 52(134)
|
||
|
||
|
||
|
||
The following is a list of all combinations for Simplex locks - the kind
|
||
Federal Express uses to "secure" items put in drop boxes. These locks can
|
||
usually be broken into in under 10 minutes, if you know what you're doing.
|
||
This list was taken from the alt.security newsgroup in Internet Netnews.
|
||
|
||
--DecimatoR
|
||
PHALCON-SKISM 1992
|
||
|
||
1
|
||
1 2
|
||
1 2 3
|
||
1 2 3 4
|
||
1 2 3 4 5
|
||
1 2 3 4&5
|
||
1 2 3 5
|
||
1 2 3 5 4
|
||
1 2 3&4
|
||
1 2 3&4 5
|
||
1 2 3&4&5
|
||
1 2 3&5
|
||
1 2 3&5 4
|
||
1 2 4
|
||
1 2 4 3
|
||
1 2 4 3 5
|
||
1 2 4 3&5
|
||
1 2 4 5
|
||
1 2 4 5 3
|
||
1 2 4&5
|
||
1 2 4&5 3
|
||
1 2 5
|
||
1 2 5 3
|
||
1 2 5 3 4
|
||
1 2 5 3&4
|
||
1 2 5 4
|
||
1 2 5 4 3
|
||
1 2&3
|
||
1 2&3 4
|
||
1 2&3 4 5
|
||
1 2&3 4&5
|
||
1 2&3 5
|
||
1 2&3 5 4
|
||
1 2&3&4
|
||
1 2&3&4 5
|
||
1 2&3&4&5
|
||
1 2&3&5
|
||
1 2&3&5 4
|
||
1 2&4
|
||
1 2&4 3
|
||
1 2&4 3 5
|
||
1 2&4 3&5
|
||
1 2&4 5
|
||
1 2&4 5 3
|
||
1 2&4&5
|
||
1 2&4&5 3
|
||
1 2&5
|
||
1 2&5 3
|
||
1 2&5 3 4
|
||
1 2&5 3&4
|
||
1 2&5 4
|
||
1 2&5 4 3
|
||
1 3
|
||
1 3 2
|
||
1 3 2 4
|
||
1 3 2 4 5
|
||
1 3 2 4&5
|
||
1 3 2 5
|
||
1 3 2 5 4
|
||
1 3 2&4
|
||
1 3 2&4 5
|
||
1 3 2&4&5
|
||
1 3 2&5
|
||
1 3 2&5 4
|
||
1 3 4
|
||
1 3 4 2
|
||
1 3 4 2 5
|
||
1 3 4 2&5
|
||
1 3 4 5
|
||
1 3 4 5 2
|
||
1 3 4&5
|
||
1 3 4&5 2
|
||
1 3 5
|
||
1 3 5 2
|
||
1 3 5 2 4
|
||
1 3 5 2&4
|
||
1 3 5 4
|
||
1 3 5 4 2
|
||
1 3&4
|
||
1 3&4 2
|
||
1 3&4 2 5
|
||
1 3&4 2&5
|
||
1 3&4 5
|
||
1 3&4 5 2
|
||
1 3&4&5
|
||
1 3&4&5 2
|
||
1 3&5
|
||
1 3&5 2
|
||
1 3&5 2 4
|
||
1 3&5 2&4
|
||
1 3&5 4
|
||
1 3&5 4 2
|
||
1 4
|
||
1 4 2
|
||
1 4 2 3
|
||
1 4 2 3 5
|
||
1 4 2 3&5
|
||
1 4 2 5
|
||
1 4 2 5 3
|
||
1 4 2&3
|
||
1 4 2&3 5
|
||
1 4 2&3&5
|
||
1 4 2&5
|
||
1 4 2&5 3
|
||
1 4 3
|
||
1 4 3 2
|
||
1 4 3 2 5
|
||
1 4 3 2&5
|
||
1 4 3 5
|
||
1 4 3 5 2
|
||
1 4 3&5
|
||
1 4 3&5 2
|
||
1 4 5
|
||
1 4 5 2
|
||
1 4 5 2 3
|
||
1 4 5 2&3
|
||
1 4 5 3
|
||
1 4 5 3 2
|
||
1 4&5
|
||
1 4&5 2
|
||
1 4&5 2 3
|
||
1 4&5 2&3
|
||
1 4&5 3
|
||
1 4&5 3 2
|
||
1 5
|
||
1 5 2
|
||
1 5 2 3
|
||
1 5 2 3 4
|
||
1 5 2 3&4
|
||
1 5 2 4
|
||
1 5 2 4 3
|
||
1 5 2&3
|
||
1 5 2&3 4
|
||
1 5 2&3&4
|
||
1 5 2&4
|
||
1 5 2&4 3
|
||
1 5 3
|
||
1 5 3 2
|
||
1 5 3 2 4
|
||
1 5 3 2&4
|
||
1 5 3 4
|
||
1 5 3 4 2
|
||
1 5 3&4
|
||
1 5 3&4 2
|
||
1 5 4
|
||
1 5 4 2
|
||
1 5 4 2 3
|
||
1 5 4 2&3
|
||
1 5 4 3
|
||
1 5 4 3 2
|
||
1&2
|
||
1&2 3
|
||
1&2 3 4
|
||
1&2 3 4 5
|
||
1&2 3 4&5
|
||
1&2 3 5
|
||
1&2 3 5 4
|
||
1&2 3&4
|
||
1&2 3&4 5
|
||
1&2 3&4&5
|
||
1&2 3&5
|
||
1&2 3&5 4
|
||
1&2 4
|
||
1&2 4 3
|
||
1&2 4 3 5
|
||
1&2 4 3&5
|
||
1&2 4 5
|
||
1&2 4 5 3
|
||
1&2 4&5
|
||
1&2 4&5 3
|
||
1&2 5
|
||
1&2 5 3
|
||
1&2 5 3 4
|
||
1&2 5 3&4
|
||
1&2 5 4
|
||
1&2 5 4 3
|
||
1&2&3
|
||
1&2&3 4
|
||
1&2&3 4 5
|
||
1&2&3 4&5
|
||
1&2&3 5
|
||
1&2&3 5 4
|
||
1&2&3&4
|
||
1&2&3&4 5
|
||
1&2&3&4&5
|
||
1&2&3&5
|
||
1&2&3&5 4
|
||
1&2&4
|
||
1&2&4 3
|
||
1&2&4 3 5
|
||
1&2&4 3&5
|
||
1&2&4 5
|
||
1&2&4 5 3
|
||
1&2&4&5
|
||
1&2&4&5 3
|
||
1&2&5
|
||
1&2&5 3
|
||
1&2&5 3 4
|
||
1&2&5 3&4
|
||
1&2&5 4
|
||
1&2&5 4 3
|
||
1&3
|
||
1&3 2
|
||
1&3 2 4
|
||
1&3 2 4 5
|
||
1&3 2 4&5
|
||
1&3 2 5
|
||
1&3 2 5 4
|
||
1&3 2&4
|
||
1&3 2&4 5
|
||
1&3 2&4&5
|
||
1&3 2&5
|
||
1&3 2&5 4
|
||
1&3 4
|
||
1&3 4 2
|
||
1&3 4 2 5
|
||
1&3 4 2&5
|
||
1&3 4 5
|
||
1&3 4 5 2
|
||
1&3 4&5
|
||
1&3 4&5 2
|
||
1&3 5
|
||
1&3 5 2
|
||
1&3 5 2 4
|
||
1&3 5 2&4
|
||
1&3 5 4
|
||
1&3 5 4 2
|
||
1&3&4
|
||
1&3&4 2
|
||
1&3&4 2 5
|
||
1&3&4 2&5
|
||
1&3&4 5
|
||
1&3&4 5 2
|
||
1&3&4&5
|
||
1&3&4&5 2
|
||
1&3&5
|
||
1&3&5 2
|
||
1&3&5 2 4
|
||
1&3&5 2&4
|
||
1&3&5 4
|
||
1&3&5 4 2
|
||
1&4
|
||
1&4 2
|
||
1&4 2 3
|
||
1&4 2 3 5
|
||
1&4 2 3&5
|
||
1&4 2 5
|
||
1&4 2 5 3
|
||
1&4 2&3
|
||
1&4 2&3 5
|
||
1&4 2&3&5
|
||
1&4 2&5
|
||
1&4 2&5 3
|
||
1&4 3
|
||
1&4 3 2
|
||
1&4 3 2 5
|
||
1&4 3 2&5
|
||
1&4 3 5
|
||
1&4 3 5 2
|
||
1&4 3&5
|
||
1&4 3&5 2
|
||
1&4 5
|
||
1&4 5 2
|
||
1&4 5 2 3
|
||
1&4 5 2&3
|
||
1&4 5 3
|
||
1&4 5 3 2
|
||
1&4&5
|
||
1&4&5 2
|
||
1&4&5 2 3
|
||
1&4&5 2&3
|
||
1&4&5 3
|
||
1&4&5 3 2
|
||
1&5
|
||
1&5 2
|
||
1&5 2 3
|
||
1&5 2 3 4
|
||
1&5 2 3&4
|
||
1&5 2 4
|
||
1&5 2 4 3
|
||
1&5 2&3
|
||
1&5 2&3 4
|
||
1&5 2&3&4
|
||
1&5 2&4
|
||
1&5 2&4 3
|
||
1&5 3
|
||
1&5 3 2
|
||
1&5 3 2 4
|
||
1&5 3 2&4
|
||
1&5 3 4
|
||
1&5 3 4 2
|
||
1&5 3&4
|
||
1&5 3&4 2
|
||
1&5 4
|
||
1&5 4 2
|
||
1&5 4 2 3
|
||
1&5 4 2&3
|
||
1&5 4 3
|
||
1&5 4 3 2
|
||
2
|
||
2 1
|
||
2 1 3
|
||
2 1 3 4
|
||
2 1 3 4 5
|
||
2 1 3 4&5
|
||
2 1 3 5
|
||
2 1 3 5 4
|
||
2 1 3&4
|
||
2 1 3&4 5
|
||
2 1 3&4&5
|
||
2 1 3&5
|
||
2 1 3&5 4
|
||
2 1 4
|
||
2 1 4 3
|
||
2 1 4 3 5
|
||
2 1 4 3&5
|
||
2 1 4 5
|
||
2 1 4 5 3
|
||
2 1 4&5
|
||
2 1 4&5 3
|
||
2 1 5
|
||
2 1 5 3
|
||
2 1 5 3 4
|
||
2 1 5 3&4
|
||
2 1 5 4
|
||
2 1 5 4 3
|
||
2 1&3
|
||
2 1&3 4
|
||
2 1&3 4 5
|
||
2 1&3 4&5
|
||
2 1&3 5
|
||
2 1&3 5 4
|
||
2 1&3&4
|
||
2 1&3&4 5
|
||
2 1&3&4&5
|
||
2 1&3&5
|
||
2 1&3&5 4
|
||
2 1&4
|
||
2 1&4 3
|
||
2 1&4 3 5
|
||
2 1&4 3&5
|
||
2 1&4 5
|
||
2 1&4 5 3
|
||
2 1&4&5
|
||
2 1&4&5 3
|
||
2 1&5
|
||
2 1&5 3
|
||
2 1&5 3 4
|
||
2 1&5 3&4
|
||
2 1&5 4
|
||
2 1&5 4 3
|
||
2 3
|
||
2 3 1
|
||
2 3 1 4
|
||
2 3 1 4 5
|
||
2 3 1 4&5
|
||
2 3 1 5
|
||
2 3 1 5 4
|
||
2 3 1&4
|
||
2 3 1&4 5
|
||
2 3 1&4&5
|
||
2 3 1&5
|
||
2 3 1&5 4
|
||
2 3 4
|
||
2 3 4 1
|
||
2 3 4 1 5
|
||
2 3 4 1&5
|
||
2 3 4 5
|
||
2 3 4 5 1
|
||
2 3 4&5
|
||
2 3 4&5 1
|
||
2 3 5
|
||
2 3 5 1
|
||
2 3 5 1 4
|
||
2 3 5 1&4
|
||
2 3 5 4
|
||
2 3 5 4 1
|
||
2 3&4
|
||
2 3&4 1
|
||
2 3&4 1 5
|
||
2 3&4 1&5
|
||
2 3&4 5
|
||
2 3&4 5 1
|
||
2 3&4&5
|
||
2 3&4&5 1
|
||
2 3&5
|
||
2 3&5 1
|
||
2 3&5 1 4
|
||
2 3&5 1&4
|
||
2 3&5 4
|
||
2 3&5 4 1
|
||
2 4
|
||
2 4 1
|
||
2 4 1 3
|
||
2 4 1 3 5
|
||
2 4 1 3&5
|
||
2 4 1 5
|
||
2 4 1 5 3
|
||
2 4 1&3
|
||
2 4 1&3 5
|
||
2 4 1&3&5
|
||
2 4 1&5
|
||
2 4 1&5 3
|
||
2 4 3
|
||
2 4 3 1
|
||
2 4 3 1 5
|
||
2 4 3 1&5
|
||
2 4 3 5
|
||
2 4 3 5 1
|
||
2 4 3&5
|
||
2 4 3&5 1
|
||
2 4 5
|
||
2 4 5 1
|
||
2 4 5 1 3
|
||
2 4 5 1&3
|
||
2 4 5 3
|
||
2 4 5 3 1
|
||
2 4&5
|
||
2 4&5 1
|
||
2 4&5 1 3
|
||
2 4&5 1&3
|
||
2 4&5 3
|
||
2 4&5 3 1
|
||
2 5
|
||
2 5 1
|
||
2 5 1 3
|
||
2 5 1 3 4
|
||
2 5 1 3&4
|
||
2 5 1 4
|
||
2 5 1 4 3
|
||
2 5 1&3
|
||
2 5 1&3 4
|
||
2 5 1&3&4
|
||
2 5 1&4
|
||
2 5 1&4 3
|
||
2 5 3
|
||
2 5 3 1
|
||
2 5 3 1 4
|
||
2 5 3 1&4
|
||
2 5 3 4
|
||
2 5 3 4 1
|
||
2 5 3&4
|
||
2 5 3&4 1
|
||
2 5 4
|
||
2 5 4 1
|
||
2 5 4 1 3
|
||
2 5 4 1&3
|
||
2 5 4 3
|
||
2 5 4 3 1
|
||
2&3
|
||
2&3 1
|
||
2&3 1 4
|
||
2&3 1 4 5
|
||
2&3 1 4&5
|
||
2&3 1 5
|
||
2&3 1 5 4
|
||
2&3 1&4
|
||
2&3 1&4 5
|
||
2&3 1&4&5
|
||
2&3 1&5
|
||
2&3 1&5 4
|
||
2&3 4
|
||
2&3 4 1
|
||
2&3 4 1 5
|
||
2&3 4 1&5
|
||
2&3 4 5
|
||
2&3 4 5 1
|
||
2&3 4&5
|
||
2&3 4&5 1
|
||
2&3 5
|
||
2&3 5 1
|
||
2&3 5 1 4
|
||
2&3 5 1&4
|
||
2&3 5 4
|
||
2&3 5 4 1
|
||
2&3&4
|
||
2&3&4 1
|
||
2&3&4 1 5
|
||
2&3&4 1&5
|
||
2&3&4 5
|
||
2&3&4 5 1
|
||
2&3&4&5
|
||
2&3&4&5 1
|
||
2&3&5
|
||
2&3&5 1
|
||
2&3&5 1 4
|
||
2&3&5 1&4
|
||
2&3&5 4
|
||
2&3&5 4 1
|
||
2&4
|
||
2&4 1
|
||
2&4 1 3
|
||
2&4 1 3 5
|
||
2&4 1 3&5
|
||
2&4 1 5
|
||
2&4 1 5 3
|
||
2&4 1&3
|
||
2&4 1&3 5
|
||
2&4 1&3&5
|
||
2&4 1&5
|
||
2&4 1&5 3
|
||
2&4 3
|
||
2&4 3 1
|
||
2&4 3 1 5
|
||
2&4 3 1&5
|
||
2&4 3 5
|
||
2&4 3 5 1
|
||
2&4 3&5
|
||
2&4 3&5 1
|
||
2&4 5
|
||
2&4 5 1
|
||
2&4 5 1 3
|
||
2&4 5 1&3
|
||
2&4 5 3
|
||
2&4 5 3 1
|
||
2&4&5
|
||
2&4&5 1
|
||
2&4&5 1 3
|
||
2&4&5 1&3
|
||
2&4&5 3
|
||
2&4&5 3 1
|
||
2&5
|
||
2&5 1
|
||
2&5 1 3
|
||
2&5 1 3 4
|
||
2&5 1 3&4
|
||
2&5 1 4
|
||
2&5 1 4 3
|
||
2&5 1&3
|
||
2&5 1&3 4
|
||
2&5 1&3&4
|
||
2&5 1&4
|
||
2&5 1&4 3
|
||
2&5 3
|
||
2&5 3 1
|
||
2&5 3 1 4
|
||
2&5 3 1&4
|
||
2&5 3 4
|
||
2&5 3 4 1
|
||
2&5 3&4
|
||
2&5 3&4 1
|
||
2&5 4
|
||
2&5 4 1
|
||
2&5 4 1 3
|
||
2&5 4 1&3
|
||
2&5 4 3
|
||
2&5 4 3 1
|
||
3
|
||
3 1
|
||
3 1 2
|
||
3 1 2 4
|
||
3 1 2 4 5
|
||
3 1 2 4&5
|
||
3 1 2 5
|
||
3 1 2 5 4
|
||
3 1 2&4
|
||
3 1 2&4 5
|
||
3 1 2&4&5
|
||
3 1 2&5
|
||
3 1 2&5 4
|
||
3 1 4
|
||
3 1 4 2
|
||
3 1 4 2 5
|
||
3 1 4 2&5
|
||
3 1 4 5
|
||
3 1 4 5 2
|
||
3 1 4&5
|
||
3 1 4&5 2
|
||
3 1 5
|
||
3 1 5 2
|
||
3 1 5 2 4
|
||
3 1 5 2&4
|
||
3 1 5 4
|
||
3 1 5 4 2
|
||
3 1&2
|
||
3 1&2 4
|
||
3 1&2 4 5
|
||
3 1&2 4&5
|
||
3 1&2 5
|
||
3 1&2 5 4
|
||
3 1&2&4
|
||
3 1&2&4 5
|
||
3 1&2&4&5
|
||
3 1&2&5
|
||
3 1&2&5 4
|
||
3 1&4
|
||
3 1&4 2
|
||
3 1&4 2 5
|
||
3 1&4 2&5
|
||
3 1&4 5
|
||
3 1&4 5 2
|
||
3 1&4&5
|
||
3 1&4&5 2
|
||
3 1&5
|
||
3 1&5 2
|
||
3 1&5 2 4
|
||
3 1&5 2&4
|
||
3 1&5 4
|
||
3 1&5 4 2
|
||
3 2
|
||
3 2 1
|
||
3 2 1 4
|
||
3 2 1 4 5
|
||
3 2 1 4&5
|
||
3 2 1 5
|
||
3 2 1 5 4
|
||
3 2 1&4
|
||
3 2 1&4 5
|
||
3 2 1&4&5
|
||
3 2 1&5
|
||
3 2 1&5 4
|
||
3 2 4
|
||
3 2 4 1
|
||
3 2 4 1 5
|
||
3 2 4 1&5
|
||
3 2 4 5
|
||
3 2 4 5 1
|
||
3 2 4&5
|
||
3 2 4&5 1
|
||
3 2 5
|
||
3 2 5 1
|
||
3 2 5 1 4
|
||
3 2 5 1&4
|
||
3 2 5 4
|
||
3 2 5 4 1
|
||
3 2&4
|
||
3 2&4 1
|
||
3 2&4 1 5
|
||
3 2&4 1&5
|
||
3 2&4 5
|
||
3 2&4 5 1
|
||
3 2&4&5
|
||
3 2&4&5 1
|
||
3 2&5
|
||
3 2&5 1
|
||
3 2&5 1 4
|
||
3 2&5 1&4
|
||
3 2&5 4
|
||
3 2&5 4 1
|
||
3 4
|
||
3 4 1
|
||
3 4 1 2
|
||
3 4 1 2 5
|
||
3 4 1 2&5
|
||
3 4 1 5
|
||
3 4 1 5 2
|
||
3 4 1&2
|
||
3 4 1&2 5
|
||
3 4 1&2&5
|
||
3 4 1&5
|
||
3 4 1&5 2
|
||
3 4 2
|
||
3 4 2 1
|
||
3 4 2 1 5
|
||
3 4 2 1&5
|
||
3 4 2 5
|
||
3 4 2 5 1
|
||
3 4 2&5
|
||
3 4 2&5 1
|
||
3 4 5
|
||
3 4 5 1
|
||
3 4 5 1 2
|
||
3 4 5 1&2
|
||
3 4 5 2
|
||
3 4 5 2 1
|
||
3 4&5
|
||
3 4&5 1
|
||
3 4&5 1 2
|
||
3 4&5 1&2
|
||
3 4&5 2
|
||
3 4&5 2 1
|
||
3 5
|
||
3 5 1
|
||
3 5 1 2
|
||
3 5 1 2 4
|
||
3 5 1 2&4
|
||
3 5 1 4
|
||
3 5 1 4 2
|
||
3 5 1&2
|
||
3 5 1&2 4
|
||
3 5 1&2&4
|
||
3 5 1&4
|
||
3 5 1&4 2
|
||
3 5 2
|
||
3 5 2 1
|
||
3 5 2 1 4
|
||
3 5 2 1&4
|
||
3 5 2 4
|
||
3 5 2 4 1
|
||
3 5 2&4
|
||
3 5 2&4 1
|
||
3 5 4
|
||
3 5 4 1
|
||
3 5 4 1 2
|
||
3 5 4 1&2
|
||
3 5 4 2
|
||
3 5 4 2 1
|
||
3&4
|
||
3&4 1
|
||
3&4 1 2
|
||
3&4 1 2 5
|
||
3&4 1 2&5
|
||
3&4 1 5
|
||
3&4 1 5 2
|
||
3&4 1&2
|
||
3&4 1&2 5
|
||
3&4 1&2&5
|
||
3&4 1&5
|
||
3&4 1&5 2
|
||
3&4 2
|
||
3&4 2 1
|
||
3&4 2 1 5
|
||
3&4 2 1&5
|
||
3&4 2 5
|
||
3&4 2 5 1
|
||
3&4 2&5
|
||
3&4 2&5 1
|
||
3&4 5
|
||
3&4 5 1
|
||
3&4 5 1 2
|
||
3&4 5 1&2
|
||
3&4 5 2
|
||
3&4 5 2 1
|
||
3&4&5
|
||
3&4&5 1
|
||
3&4&5 1 2
|
||
3&4&5 1&2
|
||
3&4&5 2
|
||
3&4&5 2 1
|
||
3&5
|
||
3&5 1
|
||
3&5 1 2
|
||
3&5 1 2 4
|
||
3&5 1 2&4
|
||
3&5 1 4
|
||
3&5 1 4 2
|
||
3&5 1&2
|
||
3&5 1&2 4
|
||
3&5 1&2&4
|
||
3&5 1&4
|
||
3&5 1&4 2
|
||
3&5 2
|
||
3&5 2 1
|
||
3&5 2 1 4
|
||
3&5 2 1&4
|
||
3&5 2 4
|
||
3&5 2 4 1
|
||
3&5 2&4
|
||
3&5 2&4 1
|
||
3&5 4
|
||
3&5 4 1
|
||
3&5 4 1 2
|
||
3&5 4 1&2
|
||
3&5 4 2
|
||
3&5 4 2 1
|
||
4
|
||
4 1
|
||
4 1 2
|
||
4 1 2 3
|
||
4 1 2 3 5
|
||
4 1 2 3&5
|
||
4 1 2 5
|
||
4 1 2 5 3
|
||
4 1 2&3
|
||
4 1 2&3 5
|
||
4 1 2&3&5
|
||
4 1 2&5
|
||
4 1 2&5 3
|
||
4 1 3
|
||
4 1 3 2
|
||
4 1 3 2 5
|
||
4 1 3 2&5
|
||
4 1 3 5
|
||
4 1 3 5 2
|
||
4 1 3&5
|
||
4 1 3&5 2
|
||
4 1 5
|
||
4 1 5 2
|
||
4 1 5 2 3
|
||
4 1 5 2&3
|
||
4 1 5 3
|
||
4 1 5 3 2
|
||
4 1&2
|
||
4 1&2 3
|
||
4 1&2 3 5
|
||
4 1&2 3&5
|
||
4 1&2 5
|
||
4 1&2 5 3
|
||
4 1&2&3
|
||
4 1&2&3 5
|
||
4 1&2&3&5
|
||
4 1&2&5
|
||
4 1&2&5 3
|
||
4 1&3
|
||
4 1&3 2
|
||
4 1&3 2 5
|
||
4 1&3 2&5
|
||
4 1&3 5
|
||
4 1&3 5 2
|
||
4 1&3&5
|
||
4 1&3&5 2
|
||
4 1&5
|
||
4 1&5 2
|
||
4 1&5 2 3
|
||
4 1&5 2&3
|
||
4 1&5 3
|
||
4 1&5 3 2
|
||
4 2
|
||
4 2 1
|
||
4 2 1 3
|
||
4 2 1 3 5
|
||
4 2 1 3&5
|
||
4 2 1 5
|
||
4 2 1 5 3
|
||
4 2 1&3
|
||
4 2 1&3 5
|
||
4 2 1&3&5
|
||
4 2 1&5
|
||
4 2 1&5 3
|
||
4 2 3
|
||
4 2 3 1
|
||
4 2 3 1 5
|
||
4 2 3 1&5
|
||
4 2 3 5
|
||
4 2 3 5 1
|
||
4 2 3&5
|
||
4 2 3&5 1
|
||
4 2 5
|
||
4 2 5 1
|
||
4 2 5 1 3
|
||
4 2 5 1&3
|
||
4 2 5 3
|
||
4 2 5 3 1
|
||
4 2&3
|
||
4 2&3 1
|
||
4 2&3 1 5
|
||
4 2&3 1&5
|
||
4 2&3 5
|
||
4 2&3 5 1
|
||
4 2&3&5
|
||
4 2&3&5 1
|
||
4 2&5
|
||
4 2&5 1
|
||
4 2&5 1 3
|
||
4 2&5 1&3
|
||
4 2&5 3
|
||
4 2&5 3 1
|
||
4 3
|
||
4 3 1
|
||
4 3 1 2
|
||
4 3 1 2 5
|
||
4 3 1 2&5
|
||
4 3 1 5
|
||
4 3 1 5 2
|
||
4 3 1&2
|
||
4 3 1&2 5
|
||
4 3 1&2&5
|
||
4 3 1&5
|
||
4 3 1&5 2
|
||
4 3 2
|
||
4 3 2 1
|
||
4 3 2 1 5
|
||
4 3 2 1&5
|
||
4 3 2 5
|
||
4 3 2 5 1
|
||
4 3 2&5
|
||
4 3 2&5 1
|
||
4 3 5
|
||
4 3 5 1
|
||
4 3 5 1 2
|
||
4 3 5 1&2
|
||
4 3 5 2
|
||
4 3 5 2 1
|
||
4 3&5
|
||
4 3&5 1
|
||
4 3&5 1 2
|
||
4 3&5 1&2
|
||
4 3&5 2
|
||
4 3&5 2 1
|
||
4 5
|
||
4 5 1
|
||
4 5 1 2
|
||
4 5 1 2 3
|
||
4 5 1 2&3
|
||
4 5 1 3
|
||
4 5 1 3 2
|
||
4 5 1&2
|
||
4 5 1&2 3
|
||
4 5 1&2&3
|
||
4 5 1&3
|
||
4 5 1&3 2
|
||
4 5 2
|
||
4 5 2 1
|
||
4 5 2 1 3
|
||
4 5 2 1&3
|
||
4 5 2 3
|
||
4 5 2 3 1
|
||
4 5 2&3
|
||
4 5 2&3 1
|
||
4 5 3
|
||
4 5 3 1
|
||
4 5 3 1 2
|
||
4 5 3 1&2
|
||
4 5 3 2
|
||
4 5 3 2 1
|
||
4&5
|
||
4&5 1
|
||
4&5 1 2
|
||
4&5 1 2 3
|
||
4&5 1 2&3
|
||
4&5 1 3
|
||
4&5 1 3 2
|
||
4&5 1&2
|
||
4&5 1&2 3
|
||
4&5 1&2&3
|
||
4&5 1&3
|
||
4&5 1&3 2
|
||
4&5 2
|
||
4&5 2 1
|
||
4&5 2 1 3
|
||
4&5 2 1&3
|
||
4&5 2 3
|
||
4&5 2 3 1
|
||
4&5 2&3
|
||
4&5 2&3 1
|
||
4&5 3
|
||
4&5 3 1
|
||
4&5 3 1 2
|
||
4&5 3 1&2
|
||
4&5 3 2
|
||
4&5 3 2 1
|
||
5
|
||
5 1
|
||
5 1 2
|
||
5 1 2 3
|
||
5 1 2 3 4
|
||
5 1 2 3&4
|
||
5 1 2 4
|
||
5 1 2 4 3
|
||
5 1 2&3
|
||
5 1 2&3 4
|
||
5 1 2&3&4
|
||
5 1 2&4
|
||
5 1 2&4 3
|
||
5 1 3
|
||
5 1 3 2
|
||
5 1 3 2 4
|
||
5 1 3 2&4
|
||
5 1 3 4
|
||
5 1 3 4 2
|
||
5 1 3&4
|
||
5 1 3&4 2
|
||
5 1 4
|
||
5 1 4 2
|
||
5 1 4 2 3
|
||
5 1 4 2&3
|
||
5 1 4 3
|
||
5 1 4 3 2
|
||
5 1&2
|
||
5 1&2 3
|
||
5 1&2 3 4
|
||
5 1&2 3&4
|
||
5 1&2 4
|
||
5 1&2 4 3
|
||
5 1&2&3
|
||
5 1&2&3 4
|
||
5 1&2&3&4
|
||
5 1&2&4
|
||
5 1&2&4 3
|
||
5 1&3
|
||
5 1&3 2
|
||
5 1&3 2 4
|
||
5 1&3 2&4
|
||
5 1&3 4
|
||
5 1&3 4 2
|
||
5 1&3&4
|
||
5 1&3&4 2
|
||
5 1&4
|
||
5 1&4 2
|
||
5 1&4 2 3
|
||
5 1&4 2&3
|
||
5 1&4 3
|
||
5 1&4 3 2
|
||
5 2
|
||
5 2 1
|
||
5 2 1 3
|
||
5 2 1 3 4
|
||
5 2 1 3&4
|
||
5 2 1 4
|
||
5 2 1 4 3
|
||
5 2 1&3
|
||
5 2 1&3 4
|
||
5 2 1&3&4
|
||
5 2 1&4
|
||
5 2 1&4 3
|
||
5 2 3
|
||
5 2 3 1
|
||
5 2 3 1 4
|
||
5 2 3 1&4
|
||
5 2 3 4
|
||
5 2 3 4 1
|
||
5 2 3&4
|
||
5 2 3&4 1
|
||
5 2 4
|
||
5 2 4 1
|
||
5 2 4 1 3
|
||
5 2 4 1&3
|
||
5 2 4 3
|
||
5 2 4 3 1
|
||
5 2&3
|
||
5 2&3 1
|
||
5 2&3 1 4
|
||
5 2&3 1&4
|
||
5 2&3 4
|
||
5 2&3 4 1
|
||
5 2&3&4
|
||
5 2&3&4 1
|
||
5 2&4
|
||
5 2&4 1
|
||
5 2&4 1 3
|
||
5 2&4 1&3
|
||
5 2&4 3
|
||
5 2&4 3 1
|
||
5 3
|
||
5 3 1
|
||
5 3 1 2
|
||
5 3 1 2 4
|
||
5 3 1 2&4
|
||
5 3 1 4
|
||
5 3 1 4 2
|
||
5 3 1&2
|
||
5 3 1&2 4
|
||
5 3 1&2&4
|
||
5 3 1&4
|
||
5 3 1&4 2
|
||
5 3 2
|
||
5 3 2 1
|
||
5 3 2 1 4
|
||
5 3 2 1&4
|
||
5 3 2 4
|
||
5 3 2 4 1
|
||
5 3 2&4
|
||
5 3 2&4 1
|
||
5 3 4
|
||
5 3 4 1
|
||
5 3 4 1 2
|
||
5 3 4 1&2
|
||
5 3 4 2
|
||
5 3 4 2 1
|
||
5 3&4
|
||
5 3&4 1
|
||
5 3&4 1 2
|
||
5 3&4 1&2
|
||
5 3&4 2
|
||
5 3&4 2 1
|
||
5 4
|
||
5 4 1
|
||
5 4 1 2
|
||
5 4 1 2 3
|
||
5 4 1 2&3
|
||
5 4 1 3
|
||
5 4 1 3 2
|
||
5 4 1&2
|
||
5 4 1&2 3
|
||
5 4 1&2&3
|
||
5 4 1&3
|
||
5 4 1&3 2
|
||
5 4 2
|
||
5 4 2 1
|
||
5 4 2 1 3
|
||
5 4 2 1&3
|
||
5 4 2 3
|
||
5 4 2 3 1
|
||
5 4 2&3
|
||
5 4 2&3 1
|
||
5 4 3
|
||
5 4 3 1
|
||
5 4 3 1 2
|
||
5 4 3 1&2
|
||
5 4 3 2
|
||
5 4 3 2 1
|
||
|
||
|