52 lines
1.3 KiB
Plaintext
52 lines
1.3 KiB
Plaintext
|
BASIC TRIGONOMETRY REFERENCE
|
||
|
|
||
|
Trigonometric functions denote the relationship between the
|
||
|
subtended angle 'x' within a right-triangle and the ratio of
|
||
|
its sides:
|
||
|
|
||
|
/| sin(a) = y/r
|
||
|
r / | cos(a) = x/r
|
||
|
(hyp) / | y tan(a) = y/x
|
||
|
/ | (opp)
|
||
|
/a)__|
|
||
|
x (adj)
|
||
|
|
||
|
A triangle with hypotenuse (hyp) of unit-one length:
|
||
|
|
||
|
/|
|
||
|
/ | sin(a) = sin(a)/1
|
||
|
1 / | sin(a) cos(a) = cos(a)/1
|
||
|
/ | tan(a) = sin(a)/cos(a)
|
||
|
/a)__|
|
||
|
cos(a)
|
||
|
|
||
|
Via Pythagoras' theorem, sin^2(a)+cos^2(a) = 1.
|
||
|
|
||
|
USEFUL IDENTITIES:
|
||
|
|
||
|
sin(a) = cos(90 - a)
|
||
|
cos(a) = sin(90 - a)
|
||
|
|
||
|
1/sin(a) = csc(a)
|
||
|
1/cos(a) = sec(a)
|
||
|
1/tan(a) = cot(a)
|
||
|
|
||
|
sin(-a) = -sin(a)
|
||
|
csc(-a) = -csc(a)
|
||
|
cos(-a) = cos(a)
|
||
|
sec(-a) = sec(a)
|
||
|
tan(-a) = -tan(a)
|
||
|
cot(-a) = -cot(a)
|
||
|
|
||
|
sin(a -/+ b) = sin(a)*cos(b) -/+ cos(x)*sin(y) -- sign at right side is at left side
|
||
|
cos(a +/- b) = cos(x)*cos(b) -/+ sin(x)*sin(y) -- sign at left and right are opposite
|
||
|
|
||
|
|
||
|
tan(a) +/- tan(b)
|
||
|
tan(x +/- b) = -------------------
|
||
|
1 -/+ tan(a)*tan(b)
|
||
|
|
||
|
******************************************************************* END
|
||
|
|
||
|
By Navid
|