textfiles/uploads/bintutorial.txt

205 lines
5.7 KiB
Plaintext
Raw Permalink Normal View History

2021-04-15 11:31:59 -07:00
Binary tutorial for begginers.
----------------------------------
This tutorial is for people with a base
knowledge that binary is ones and zeros.
Easy, right? The 1 represents an "on"
function, and the 0 represents an "off
function.
Decimal - Binary
-----------------------
I'm going to use the easiest method I can
think of in this tutorial.
~*~*~*~*~*~*~*~*~*~*~*~*~*~*~
Example: 129
now, count from the right ot left multiplying by
twos until you reach the lowest number closest
to the decimal you.
Example:
128 64 32 16 8 4 2 1
We start with the number 128.
Subtract the number from the decimal you wish to
convert.
EX/ _ 129
128 = 1
Now take that number and see if you can subtract
it from the other number in the row.
128? Yes, = 1
64? No
32? No
16? No
8? No
4? No
2? No
1? Yes
All the numbers that were subtractable are ones, and
the ones you were unable to subtract are zeros.
EX/
128 64 32 16 8 4 2 1
1 0 0 0 0 0 0 1
Answer:
Decimal 129 in Binary is: 10000001
*******************************************************
Binary to decimal
-----------------
No that we have the binary, how do we get it back to a
decimal? Incredibly simple.
Take the binary 10000001
no insert the numbers multiplied by two again, but not putting
anything for the zeros.
EX/ 1 0 0 0 0 0 0 1
128 x x x x x x 1
Now add the numbers together to get the decimal
128+1 = 129
Remember, the far left is always 128, and the far right is always 1
Let us take another random binary now, and try that again.
1 0 0 1 0 1 0 0
128 +16 + 4 = 148
***********************************************************************
Remember, every ASCII character has a number, and with that decimal in
mind, you can speak letters etc in binary!
Below is a chart:
32 &#32; |143 <20> &#143;
33 ! &#33; |144 <09> &#144;
34 " &#34; |145 <09> &#145;
35 # &#35; |146 <09> &#146;
36 $ &#36; |147 <09> &#147;
37 % &#37; |148 <09> &#148;
38 & &#38; |149 <09> &#149;
39 ' &#39; |150 <09> &#150;
40 ( &#40; |151 <09> &#151;
41 ) &#41; |152 <09> &#152;
42 * &#42; |153 <09> &#153;
43 + &#43; |154 <09> &#154;
44 , &#44; |155 <09> &#155;
45 - &#45; |156 <09> &#156;
46 . &#46; |157 <09> &#157;
47 / &#47; |158 <09> &#158;
48 0 &#48; |159 <09> &#159;
49 1 &#49; |160 &#160;
50 2 &#50; |161 <09> &#161;
51 3 &#51; |162 <09> &#162;
52 4 &#52; |163 <09> &#163;
53 5 &#53; |164 <09> &#164;
54 6 &#54; |165 <09> &#165;
55 7 &#55; |166 <09> &#166;
56 8 &#56; |167 <09> &#167;
57 9 &#57; |168 <09> &#168;
58 : &#58; |169 <09> &#169;
59 ; &#59; |170 <09> &#170;
60 < &#60; |171 <09> &#171;
61 = &#61; |172 <09> &#172;
62 > &#62; |173 <09> &#173;
63 ? &#63; |174 <09> &#174;
64 @ &#64; |175 <09> &#175;
65 A &#65; |176 <09> &#176;
66 B &#66; |177 <09> &#177;
67 C &#67; |178 <09> &#178;
68 D &#68; |179 <09> &#179;
69 E &#69; |180 <09> &#180;
70 F &#70; |181 <09> &#181;
71 G &#71; |182 <09> &#182;
72 H &#72; |183 <09> &#183;
73 I &#73; |184 <09> &#184;
74 J &#74; |185 <09> &#185;
75 K &#75; |186 <09> &#186;
76 L &#76; |187 <09> &#187;
77 M &#77; |188 <09> &#188;
78 N &#78; |189 <09> &#189;
79 O &#79; |190 <09> &#190;
80 P &#80; |191 <09> &#191;
81 Q &#81; |192 <09> &#192;
82 R &#82; |193 <09> &#193;
83 S &#83; |194 <09> &#194;
84 T &#84; |195 <09> &#195;
85 U &#85; |196 <09> &#196;
86 V &#86; |197 <09> &#197;
87 W &#87; |198 <09> &#198;
88 X &#88; |199 <09> &#199;
89 Y &#89; |200 <09> &#200;
90 Z &#90; |201 <09> &#201;
91 [ &#91; |202 <09> &#202;
92 \ &#92; |203 <09> &#203;
93 ] &#93; |204 <09> &#204;
94 ^ &#94; |205 <09> &#205;
95 _ &#95; |206 <09> &#206;
96 ` &#96; |207 <09> &#207;
97 a &#97; |208 <09> &#208;
98 b &#98; |209 <09> &#209;
99 c &#99; |210 <09> &#210;
100 d &#100; |211 <09> &#211;
101 e &#101; |212 <09> &#212;
102 f &#102; |213 <09> &#213;
103 g &#103; |214 <09> &#214;
104 h &#104; |215 <09> &#215;
105 i &#105; |216 <09> &#216;
106 j &#106; |217 <09> &#217;
107 k &#107; |218 <09> &#218;
108 l &#108; |219 <09> &#219;
109 m &#109; |220 <09> &#220;
110 n &#110; |221 <09> &#221;
111 o &#111; |222 <09> &#222;
112 p &#112; |223 <09> &#223;
113 q &#113; |224 <09> &#224;
114 r &#114; |225 <09> &#225;
115 s &#115; |226 <09> &#226;
116 t &#116; |227 <09> &#227;
117 u &#117; |228 <09> &#228;
118 v &#118; |229 <09> &#229;
119 w &#119; |230 <09> &#230;
120 x &#120; |231 <09> &#231;
121 y &#121; |232 <09> &#232;
122 z &#122; |233 <09> &#233;
123 { &#123; |234 <09> &#234;
124 | &#124; |235 <09> &#235;
125 } &#125; |236 <09> &#236;
126 ~ &#126; |237 <09> &#237;
127  &#127; |238 <09> &#238;
128 <09> &#128; |239 <09> &#239;
129 <09> &#129; |240 <09> &#240;
130 <09> &#130; |241 <09> &#241;
131 <09> &#131; |242 <09> &#242;
132 <09> &#132; |243 <09> &#243;
133 <09> &#133; |244 <09> &#244;
134 <09> &#134; |245 <09> &#245;
135 <09> &#135; |246 <09> &#246;
136 <09> &#136; |247 <09> &#247;
137 <09> &#137; |248 <09> &#248;
138 <09> &#138; |249 <09> &#249;
139 <09> &#139; |250 <09> &#250;
140 <09> &#140; |251 <09> &#251;
141 <09> &#141; |252 <09> &#252;
142 <09> &#142; |253 <09> &#253;
143 <09> &#143; |254 <09> &#254;
------------------------------------------------------------
Adding binary
--------------
adding binary is very simple.
simply take the two numbers you wish to add, put one on top
of the other, and then add.
Using the simple rules:
1+0=1
0+1=1
0+0=0
1+1=0 (and carry the 1 to the next space to the left)
EX/ 00000010 (2)
+ 00000011 (3)
= 00000101 (5)
---------------------------------------------------------------
And there you have it! A simple begginers mini course in binary.
Not the greatest text-file, but it works. :)
~*~*~*~*~~*~*
Written by
David Carlton - Resurgam
0100100101100110001000000111100101101111011101010010000001100011011000010110111000100000011100100110010101100001011001000010000001110100011010000110100101110011001000000111100101101111011101010010000001100001011100100110010100100000011011110111011001100101011100100110010101100100011101010110001101100001011101000110010101100100